
WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

USE CASE

Quantum Orchestration for
Quantum Networks

Run groundbreaking experiments with simple code, using the

Quantum Orchestration Platform. Have a look at how quickly you can

program the OPX+ to run entanglement and distillation protocols in

this real-world use case.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

ENTANGLEMENT DISTILLATION FOR
QUANTUM NETWORKS

DISTILLATION ON REMOTE ELECTRON-NUCLEAR
2-QUBIT NODES

Quantum networks are one of the most spectacular endeavors towards a future based on

quantum technologies, with advancements promised for communication, computation, metrology,

and many more [1]. One fundamental building block for quantum networks is the ability to generate

high-quality quantum entanglement shared between remote nodes while keeping unavoidable

errors and sources of decoherence in check.

One way to purify entanglement is entanglement distillation [2], which offers a trade-off of many

not-too-impure entangled states with fewer high-fidelity ones. This protocol is extremely promising
in increasing fidelity via local operations, but it has demanding experimental requirements and
calls for complex control systems with real-time capabilities. Such demands have harshly limited

its experimental explorations, producing strong friction for the entire field.

The groundbreaking work from Kalb et al. [3] was the first demonstration of entanglement
distillation on remote electron-nuclear 2-qubit nodes, which include all elements of a rudimentary

but practical quantum network (communication qubits and memory qubits). By combining

generation, storage, and processing of high-fidelity distilled entangled states, the authors paved
the way for the upscaling that quantum networks needed to unlock their full potential.

Such outstanding demonstration resulted from a complex and carefully orchestrated protocol, a

constellation of advanced instruments, all meticulously tuned and timed for flawless operation at
the shortest timescales. Various components are used to produce the intricate protocol shown in

Fig. 1, including acousto-optical modulators (AOMs) to provide the correct optical pulses, TCSPC

electronics for time tagging and temporal filtering, AWGs and microprocessors for real-time
waveform generation, and many more.

OPX+ replaces many traditional tools such as AWGs, time-taggers, etc. It offers a unified FPGA-based
platform optimized for quantum control that can orchestrate experiments and take measurement-based

decisions dynamically and in hardware time. All the novel functionalities of the OPX+ are accessible

using our easy-to-use python-based programming language, QUA, which is compiled directly to FPGA
assembly. This powerful combination of quantum-dedicated hardware and intuitive software makes even

the most complex experiments seem like a first-year programming exercise. To demonstrate this, let’s see
how to perform the Kalb et al. [3] protocol using the Quantum Orchestration Platform.

LET’S RUN THE DISTILLATION PROTOCOL WITH THE OPX+

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Fig. 1 a) Logical blocks diagram used by Kalb et al. [3] to demonstrate entanglement distillation on remote electron-nuclear 2-qubit

nodes. Adapted from [3] with the editor’s permission. b) Legend of terms used.

Legend

Count

wait for jump

SWAP

Phase

calculate reps

purifying gate

wait for SSRO

CR check charge resonance check

ADwin verifies if condition

is fulfilled

ADwin waits until success is

signaled by other ADwin

ADwins communication

(three-way handshake)

ADwin waits for AWG end

of sequence signal

NV electron spin single-shot

readout

Signal used by the AWG

to start the sequence

AWG signals ADwin end of

entangle sequences

Event jump on AWG,

induces jump to next

sequence

Initialization of memory

into | 0>

Generate entanglement

long-distance

ADwin counts number of

repetitions

AWG waits for jump

command. If no jump

is received, return to

beginning of sequence

Swap NV state onto memory

Nuclear phase feedback

via DD of electron spin

ADwin calculates number of

DD cycles for memory

phase

Step 4 of experimental

protocol [see reference]

AWG waits for ADwins to

obtain SSRO result

Proceed to phase-adjusted

tomography if qubit was |1>

One of the gate sequences

Success?

wait: suc high

not / suc

wait for done

SSRO

Trigger

Fail/done

after nth trial

Jump

13
C init

entangle 1 and

entangle 2

-1: Jump

Tomography

a) b)

MACROS IN QUA
To write any complex sequence, we first break it into manageable blocks. QUA allows us to create
reusable macros and libraries. For instance, here’s how to program the SSRO (single-shot readout
[4]) block, a sequence that experimentalists perform on a day-to-day basis:

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

QUA macro for running a single-shot readout sequence.

def SSRO(system,SSRO_threshold):

 times_internal = declare(int, size=100)

 counts_internal = declare(int)

 play("laser", f"qubit{system}")

 align(f"qubit{system}",f"laser_red_A1_{system}")

 play("laser_on", f"laser_red_A1_{system}")

 measure("SSRO_readout", f"qubit{system}", \

None, time_tagging.analog(times_internal, 300, \

counts_internal))

 return (counts_internal < SSRO_threshold)

0

1

2

3

4

5

6

7

8

This macro defines two real-time variables (a vector to record the timestamps and an integer for the total
number of counts), triggers the readout laser, opens a measurement window in the ADC input of the OPX+,

and time-tags and counts the pulses generated by a photodiode. The macro returns a boolean, which is

True when the number of counts is smaller than a threshold. Similar to Python, a QUA macro can accept

parameters which, in this case, are the name of the system (1 or 2) and the threshold value. This lets us

reuse the same macro to address different qubits.

Similar macros exist for routine protocols, such as SSRO or XY8 blocks. See below for the full QUA code, or

visit our Quantum Sensing with NV center page for more on the XY8 sequences.

Having written macros for each block in the sequence, all that is left to do is program the control flow. With
QUA, this is just a simple programming exercise. QUA is particularly simple when working with repeat-until-

success protocols, thanks to the align() command, which we will now explore in more detail.

The entire entanglement distillation protocol [3] runs in QUA with less than 300 lines of code. Most of this

code consists of macro definitions that will be reused for other experiments and can be adapted from
code snippets you will find in our open-source libraries. Once we program all basic operations into macros,
the entire sequence demonstrated by Kalb et al. [3] is compressed in less than 50 lines of code, and runs

with the lowest possible latencies. Additionally, as the authors suggest, the sequence can readily be

improved by including steps such as active reset, which are straightforward to implement on OPX+ without

complications to the experimental setup.

REPEAT-UNTIL-SUCCESS PROTOCOLS
The sequence we are implementing is acting on two different nodes, each consisting of an NV center and

a nuclear spin. Each node is controlled independently for most of the sequence, but we want the sub-

sequences to align at certain stages so that the protocol continues only when both nodes are ready. Using

traditional equipment would be challenging because of the abundance of repeat-until-success blocks,

especially since we cannot predict in advance how long it will take each node to reach a checkpoint. Fig. 1

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
https://www.quantum-machines.co/solutions/quantum-sensing/
https://www.quantum-machines.co/solutions/quantum-sensing/

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Where Nuclear_spin_init() is a macro that initializes a memory qubit (system), composed of pulse

applications and XY8 blocks.

Nuclear_spin_init(1, counts1_total,a1,t1)

Nuclear_spin_init(2, counts2_total,a2,t2)

align("qubit1", "qubit2")

0

1

2

QUA code to run initialization macros for two different nuclear qubits in parallel and then align the sequence temporally, waiting for

both spins to have completed initialization.

depicts these as the “wait for done” blocks.

With QUA, we synchronize sequences with a simple align(‘element_1’, ’element_2’) command. This

tells the FPGA to wait on all commands addressing either element_1 or element_2 until they have both

reached that part of the program. Evaluation happens in real-time, so we do not need to know in advance

how long it will take either node to be ready. An example of how such synchronization will look in QUA is:

The initialization macros Nuclear_spin_init() on the two qubits run in parallel on different cores.

Thanks to the align() command, the FPGA knows that both qubits must be initialized at this point
in the sequence to continue. We do not need to program ADwin microprocessors and tangle our setup

further because QUA and OPX+ were made with such quantum experiments in mind.

Several steps in our example protocol call for a repeat-until-success flow. Therefore, there is no way to
predict how many times the subroutine will run when beginning the experiment: maybe after one try

and maybe after a thousand. We can implement this kind of flow with a simple while() statement, as

we would in Python:

This executes the entanglement protocol, by running the entangle() macro until the entangled
variable equals True , in a while loop that runs on the pulse processing unit (PPU), on hardware

time. We also include a counter to keep track of the number of attempts to quit after a maximum is

reached. Additionally, we know how long it took to exit the loop, which allows for phase tracking and

correction, another useful feature of the OPX+.

with while_((entangled == False) & (N < N_max)):

 entangle()

 assign(N,N+1)

0

1

2

QUA Code

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

COMPLETE PHASE CONTROL
Not only does the OPX+ enable decision-making during an experiment, it also takes care of the

problem of the relative phase with no need for user intervention. It does that by generating its pulses

with automatic hardware-level tracking of the phase accumulation of each output frequency. By

default, all pulses are performed in the rotating frame of the qubit.

Additionally, the OPX+ allows switching between an unlimited number of frequencies while preserving

the rotating frame of each tone. Such switching is crucial when the same output channel is driving

different transitions. This is done in QUA by using the update_frequency(‘system’,‘frequency’)

command as in the Nuclear_spin_init() macro you previously saw.

We can see an example of the switching by running a simple code in QUA:

This code plays pulses with an arbitrary frequency out of two OPX+ outputs. Then, one of the

frequencies is changed and changed back. In Fig. 2, we show what an observing oscilloscope would

measure at the outputs. Thanks to the OPX+ phase tracking, once the frequency of output1

is restored to the original frequency, the resulting output will still be in phase with its original twin

output2 . The tracking of a phase can also be reset by the reset_phase() command.

With program() as Phase_Example_QUA:

 reset_phase(‘output1’) ## Reset Phases

 reset_phase(‘output2’)

 update_frequency(‘output1’, 21168452) ## Set initial frequency

 update_frequency(‘output2’, 21168452)

 play(‘pi’, ‘output1’, duration = 50) ## Play pulses on outputs

 play(‘pi’, ‘output2’, duration = 150)

 update_frequency(‘output1’, 52849685) ## Update output1 frequency

 play(‘pi’, ‘output1’, duration = 50)

 update_frequency(‘output1’, 21168452) ## Update output1 frequency back

 play(‘pi’, ‘output1’, duration = 50)

0

1

2

3

4

5

6

7

8

9

10

QUA code example to show the phase tracking capabilities of the OPX+. The results of the output measurements of an OPX+ running

this code are in Fig. 2.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Fig. 2 Outputs of an OPX+ as measured with an oscilloscope while running the frequency update (see example QUA code in text).

OPX+ can also operate on the qubit frame, with rotations (using frame_rotation()) and complete

reset of the time monitoring (using reset_frame()). Using simple commands, OPX+ offers full control

over the phase. Both software and hardware are smart and intuitive, allowing you to write simple codes

to run complex experiments.

[1] Kimble, H. Jeff. Nature 453.7198 (2008): 1023-1030.

[2] Bennett, C. H., et al. Physical Review A 54.5 (1996): 3824.

[3] Kalb, N., et al. Science 356.6341 (2017): 928-932.

[4] Robledo, Lucio, et al. Nature 477.7366 (2011): 574-578.

References

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

RUN STATE OF THE ART EXPERIMENTS WITH EASE

OPX+

PULSE PROCESSING UNIT
ACHIEVE THE FASTEST TIME TO RESULTS

QUA
CODE QUANTUM PROGRAMS SEAMLESSLY

The Quantum
Orchestration Platform
AN END TO END QUANTUM CONTROL SOLUTION TO DRIVE
THE FASTEST TIME TO RESULTS, AT ANY SCALE

An architecture designed from the ground up for quantum

control, the OPX+ lets you run the quantum experiments of your

dreams right from the installation. With a quantum feature-

rich environment, the OPX+ is built for scale and performance.

Now, you can run the most complex quantum algorithms and

experiments in a fraction of the development time.

Within the OPX+ is the Pulse Processing Unit, QM’s leading-edge
quantum control technology. Progress with incomparable speed

and extreme flexibility. Run even the most demanding experiments
efficiently, with the fastest runtimes and the lowest latencies in
the industry, including quantum protocols that require real-time

waveform generation, real-time waveform acquisition,

real-time comprehensive processing, and control flow.

Implement the protocols of your wildest dreams as easily as writing

pseudocode. Designed for quantum control, QUA is the first universal
quantum pulse-level programming language. Code even the most

advanced programs and run them with the best possible performance.

Natively describe your most challenging experiments, from complex

AI-based multi-qubit calibrations to multi-qubit quantum error

correction.

*All of the information above is also valid for the OPX

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Real-Time Waveform
Generation

• Fully parametrized: length,
 frequency, phase (relative &
 absolute), amplitude,

 bandwidth, chirp

• Compensations: Crosstalk

 matrix, FIR and IIR filters
• And many more

Real-Time

Processing

Turing complete:
- Basic arithmetics
- Evaluation of
 trigonometric functions
- Vector operations
- Casting of variable
 types
- And more (Turing
 complete)

Real-Time ‘Quantum’ Estimations

• State estimations

• Error estimations

• Bayesian estimations

• Correlation functions

• Neural nets based estimations

YOUR PROTOCOLS LIVE IN THIS PHASE SPACE

• Easily express quantum algorithms and experimental protocols that comprise all of the above.

• Seamlessly sync measurements, real-time calculations, and pulses of different quantum elements.

• Loop over a wide range of parameters in real-time, including intermediate frequencies, amplitudes,

 phases, delays, integration parameters, measurement axes, etc.

• Use if/else and switch-case statements to condition operations in real time (real time feedback).

• Define procedures (macros) to be reused in the code and access an extensive family of libraries.

THE QUANTUM ORCHESTRATION PLATFORM COVERS THIS SPACE!

Fully Parametric
Waveform Generation

Waveform Acquisition
and Manipulation

Real-Time
Processing

Comprehensive
Control Flow

Real-Time Multi-Qubit Feedback

• Qubit stabilization & tracking

• Quantum error correction

• And many more

Real-Time

Measurements

• High fidelity analog to
 digital conversion

• General integration &
 demodulation

• Weighted Integrations
 accumulated integrations,
 sliced integrations, etc.

• Time Tagging, TTL counting

Real-Time

Control Flow

• If/else

• For loops

• While loops

• Switch case

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

About Quantum Machines
Quantum Machines (QM) drives quantum breakthroughs that accelerate the

path towards the new age of quantum computing. The company’s Quantum
Orchestration Platform (QOP) fundamentally redefines the control and operations
architecture of quantum processors.

The full-stack hardware and software platform is capable of running even the most

complex algorithms right out of the box, including quantum error correction, multi-

qubit calibration, and more. Helping achieve the full potential of any quantum

processor, the QOP allows for unprecedented advancement and speed-up of

quantum technologies as well as the ability to scale into the thousands of qubits.

Visit us at: www.quantum-machines.co

*The information contained in this document is confidential and intended solely for its addressees. The information is the property of QM
Technologies Inc. (“QM”) and may contain legally privileged information. QM may make changes to specifications and product descriptions at
any time, and this document does not represent a commitment on the part of QM, but is supplied solely for allowing the intended recipients
hereof to consider a general business engagement with QM. This information is subject to change without notice. © QM Technologies Inc.

If you wish to learn more:
info@quantum-machines.co

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
http://www.quantum-machines.co
mailto:info%40quantum-machines.co?subject=

