
WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

USE CASE

Quantum Orchestration for
Quantum Sensing

With the Quantum Orchestration Platform, complex and tediously
long experiments become first-year exercises, run with the lowest
latencies and real-time decision making. Have a look at some real-
world use cases with NV center sensors.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

QUANTUM SENSING WITH NV CENTERS

INDIVIDUAL ADDRESSING OF NUCLEAR SPINS

Quantum systems have emerged as powerful probes to measure key physical quantities in recent
years. Quantum sensors capitalize on the central weakness of quantum systems, their sensitivity to
disturbances in the environment [1].

After many notable examples such as atomic clocks and SQUID magnetometers, the field promises
to provide fundamental new opportunities, with immediate potential for practical applications.
Among all solid-state spins and other platforms, the nitrogen-vacancy (NV) center in diamond has
emerged as a powerful sensor for magnetic fields and nanoscale imaging due to its small size,
stability, and room temperature operation.

As the field progresses and complexity increases, the control system requirements become more
demanding, and the need for real-time feedback arises. As a concrete example, we consider the
experiment performed by Abobeih et al. [2]. In this work, the authors mapped the location of 27
individually addressed 13C atoms in a diamond lattice, using an NMR-like technique, with a single
nearby NV center as the quantum sensor.

In experiments of such complexity, achieving individual addressing of each nuclear spin is a very
demanding challenge. The authors used a variation of a dynamical decoupling (DD) sequence,
named DDRF [3], that involves the introduction of an RF pulse, in resonance with the individual
nuclear spin, interleaved in between DD pulses applied to the electron spin. Such an arduous
sequence was undoubtedly an electronics and programming feat.

The author’s approach has several nuanced requirements. Running the sequence with the OPX+
instead, allows highlighting some of its unique capabilities. For example, to have constructive
phase accumulation on the nuclear spin, it is vital to maintain precise control on the RF pulse
relative phase. The OPX+ generates its pulses with automatic hardware-level tracking of the phase
accumulation of each output frequency, taking care of the problem of relative phase without the
need for user intervention. By default, all pulses are performed in the rotating frame of the qubit.
The phase is preserved when transitioning back and forth between frequencies on the same
output channel.

Furthermore, the control over the phase allows for defining both single-qubit rotations and two-
qubit conditional gates on nuclear spin. The addition of a global phase allows for control over the
gate’s rotation axis. With an OPX+, this is as simple as writing the command frame_rotation(ϕ) with
real-time parametric waveform generation. Essentially, this means that ϕ can be a variable living
on the processor. Thus it is possible to adaptively update it during the sequence, based on live
inputs from the measurement.

Fig. 1 shows the simulated DDRF sequence for unconditional (Fig. 1a-b) and conditional (Fig. 1c-d)
rotations. We can achieve the latter by adding a phase π for every other pulse. As mentioned by
the authors, the DDRF sequence allows for parallel control of several nuclear spins, as the nuclear

ATOM ARRANGEMENT RESULTS

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

spin frequency does not restrict the interpulse delay of the electron DD. Even though the authors do not
explicitly demonstrate it in their work, this important addition is readily done with the OPX+, which offers
easy-to-use multiplexing capabilities. Fig. 2 shows an example of multiplexing of two frequencies, as
output of two different channels (Fig. 2a-b) or summed and sent through the same output channel
(Fig. 2c-d).
The possibilities do not stop at just two frequencies either. The OPX+ has 18 pulser cores capable
of working in parallel, allowing the control of up to 16 nuclear spins simultaneously (using 2 for the
electron spin). The OPX+ allows such control to be performed in parallel and with unmatched ease,
thanks to our python-based programming language QUA.

Fig. 1 a-b) Unconditional and c-d) conditional rotations on the nuclear spin, using the DDRF sequence. b) and d) shows a zoomed-in

view of a) and b), respectively, to highlight the pulse synchronization. The blue (yellow) represents the output for the I (Q) channels for

the electron spin. As no intermediate frequency is defined, these can be considered the envelope of the πx and πy pulses, respectively.

The green represents the output for the nuclear spin RF, where the frequency was chosen arbitrarily.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Fig. 2 a-b) DDRF sequence for unconditional rotation of nuclear spins, with two RF frequencies as output a-b) in parallel to two

different channels (green and red) and c-d) multiplexed to the same output channel. b) and d) shows a zoomed-in view of a) and b),

respectively, to highlight the pulse synchronization. The blue (yellow) represents the output for the I (Q) channels for the electron spin.

The ability to make macros that simplify the code is one of the advantages of QUA. It allows you to
troubleshoot and re-use compartmentalized code that makes writing new sequences exceptionally
fast. As an example, let’s write the above DDRF sequence.

CONTROLLING NUCLEAR SPIN WITH QUA

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

First, we define the macro, xy8_block() , which creates the 8 MW pulses, to the electron spin, of a
single XY8 block. The play("pi", "spin_qubit") tells the OPX+ to output a pulse named pi, both
predefined in a setup specific configuration file. The wait() command is used for the interpulse delay,
while we use frame_rotation() and reset_frame() to control the phase of the pulses. Notice that
as the pulser tracks the phase of the rotating frame, the phase defined in the frame_rotation()
command is simply the phase of the Y pulse in the rotating frame, i.e., π/2.

def xy8_block():

 # A single XY8 block, ends at x frame.

 play("pi", "spin_qubit") # 1 X

 wait(tt, "spin_qubit")

 frame_rotation(np.pi / 2, "spin_qubit")

 play("pi", "spin_qubit") # 2 Y

 wait(tt, "spin_qubit")

 reset_frame("spin_qubit")

 play("pi", "spin_qubit") # 3 X

 wait(tt, "spin_qubit")

 frame_rotation(np.pi / 2, "spin_qubit")

 play("pi", "spin_qubit") # 4 Y

 wait(tt, "spin_qubit")

 play("pi", "spin_qubit") # 5 Y

 wait(tt, "spin_qubit")

 reset_frame("spin_qubit")

 play("pi", "spin_qubit") # 6 X

 wait(tt, "spin_qubit")

 frame_rotation(np.pi / 2, "spin_qubit")

 play("pi", "spin_qubit") # 7 Y

 wait(tt, "spin_qubit")

 reset_frame("spin_qubit")

 play("pi", "spin_qubit") # 8 X

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

The second macro to complete the electron spin part of the XY8-N sequence is the xy8_n() macro,
allowing us to create the full sequence:

The for() loop is written in QUA, and this means the processor doesn’t get a code that is replicated
n times, but a command to repeat in real-time the code written within the loop. Thus, there is no limit
on how long the XY8 can be memory-wise, and long sequences won’t cause a long overhead time in
waveform uploads. QUA allows all control flow operations to run on the pulse processing unit (PPU).
Similar to the XY8 macros, we can then define the operations necessary for the RF pulses that control
the nuclear spin, first a single RF block or rf_block() , then rf_n() .

Using these macros the DDRF sequence is straightforward. For example, if we want to apply an
unconditional rotation on nuclear_spin1 ,

Then, adding a second conditional rotation on nuclear_spin2 is a single line of code.

def xy8_n(n):

 i = declare(int)

 wait(t, "spin_qubit")

 xy8_block()

 with for_(i, 0, i < n - 1, i + 1):

 wait(tt, "spin_qubit") # tt = 2*t

 xy8_block()

 wait(t, "spin_qubit")

play("pi2", "spin_qubit")

xy8_n(N)

rf_n(N, 'nuclear_spin1', False)

play("pi2", "spin_qubit")

play("pi2", "spin_qubit")

xy8_n(N)

rf_n(N, 'nuclear_spin1', False)

rf_n(N, 'nuclear_spin2', True)

play("pi2", "spin_qubit")

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

4

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

The macros are executed on different threads, and so they will run in parallel, saving time and
reducing complexity. Fig. 3 shows the result of such a pulse sequence.

It’s easy to embed such a sequence within a QUA loop, updating the frequency of the RF pulse
dynamically. If we then also include a measurement command with the capability of time tagging
photons received by a photo-diode, then we obtain a full DDRF sequence within a spectroscopy
scan, running dynamically on the PPU:

Fig. 3 a) DDRF sequence with two RF frequencies multiplexed on the same output channel (green), simultaneously applying an

unconditional rotation on the first nuclear spin and a conditional rotation on the second nuclear spin. b) shows a zoomed-in view of a)

to highlight the pulse synchronization. The blue (yellow) represents the output for the I (Q) channels for the electron spin.

with for_(freq, f_min, freq <= f_max, freq + df): # Implicit Align

 update_frequency("nuclear_spin1", freq)

 play("pi2", "spin_qubit")

 xy8_n(repsN)

 rf_n(repsN, 'nuclear_spin1', False)

 play("pi2", "spin_qubit")

 measure("readout", "green_laser", None, time_tagging.analog(times, 300, 	

 		 counts_ref))

0

1

2

3

4

5

6

7

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

QUANTUM NON-DEMOLITION EXPERIMENTS
Dynamical decoupling (DD) protocols are the basis for many experimental protocols for NV center
sensing applications, both procedural and state of the art. For example, correlating the phase
accumulation between different DD sequences (instead of averaging them) allows sensing of long
coherence signals [4]. This approach is not limited by the quantum sensor coherence time but
rather by the classical clock used to control the experiment and thus allows for sensing with arbitrary
frequency resolution [5]. Such a result can be improved by performing a quantum non-demolition
(QND) measurement [6], using an ancilla nuclear spin, increasing the number of photons collected for
each readout while increasing the minimal possible sampling rate of the sequence (See more about
single-shot readout on our NV centers use-cases page).

The OPX+ is capable of real-time decision making, improving the QND protocol by shortening its time
while maintaining high fidelity. To see how the protocol in [5] would work on an OPX+, let’s examine a
typical QND histogram, where enough repetitions were made such that the population distribution for
each state is relatively well separated. As we show in Fig. 4a, in this scenario, we can define a single
threshold between the two distributions and this is enough for declaring a state with high fidelity.

If not enough repetitions were made so the two states are not well separated (Fig. 4b), a single
threshold between the two distributions results in relatively low fidelity. To increase the state fidelity in
such case, we can define two separate thresholds: if the number of photons is larger than threshold 2,
we declare state |↑>; if the number of photons is lower than threshold 1, we declare state |↓>; if the result
is between the thresholds, we declare an inconclusive measurement.

This translates to some of the measurements being discarded in post-processing, resulting in a trade-
off between fidelity and total measurement time. This tradeoff is even less desirable when you look
at the correlations between measurements, as inconclusive measurements are holes in your results
vector.

ADAPTIVE REAL-TIME PROTOCOLS WITH THE OPX+

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
https://www.quantum-machines.co/solutions/nv-centers/
https://www.quantum-machines.co/solutions/nv-centers/

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Fig. 4 Simulated photon counting histograms. a) Measurement repeated enough times to clearly separate the photon distribution

function of the two nuclear states. High fidelity readout can be readily achieved using a single threshold. b) Measurement repeated

not enough times, showing overlapping distributions adding uncertainty in the state discrimination. High fidelity readout can still be

achieved using two thresholds, at the price of adding a third undetermined state, due to which many events will be discarded.

This is where real-time processing and decision-making can be beneficial. It is possible to define
dynamic thresholds in the OPX+ dependent on the number of repetitions, preserving the desired
readout fidelity while reducing the average readout length. The OPX+ can autonomously try to declare
a state after a minimal number of repetitions, and if the result is inconclusive, it will just continue with
the QND measurement until it is possible to declare a state with the desired preconfigured fidelity. We
can quickly write such an example protocol in our simple python-based programming language QUA:

assign(counts_total, 0)

with while_((j < M) & (achieved_fidelity == False)):

 with for_(i, 0, i < N, i + 1):

 conditional_pi()

 measure("readout", "NV", None, time_tagging.analog(times, 300, counts))

 assign(counts_total, counts_total + counts)

 threshold = calculate_thresholds(j)

 assign(j, j + 1)

 with if_(counts_total > threshold[0]):

 assign(measured_state, 0)

 assign(achieved_fidelity, True)

 with if_(counts_total < threshold[1]):

 assign(measured_state, 1)

 assign(achieved_fidelity, True)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Where conditional_pi() and calculate_thresholds() are predefined macro functions. One
applies a conditional π pulse on the electron spin based on the nuclear spin state, while the other
calculates, in real-time, the thresholds needed for the desired fidelity (based on the number of repetitions
represented by the variable j). N is the minimal number of repetitions necessary for a distinguishable
difference in the expectation value for the number of photons, and M is the maximum number of
repetitions we allow, based on the desired sampling rate of the experiment. This simple code allows you to
perform an optimized and adaptive version of the QND protocol with an OPX+, right out of the box.

As for sequences such as the one in the work of Boss et. al. [5], or other measurements of systems with
long coherence times (even up to minutes), large amounts of data are produced. The OPX+ not only
allows for incredible real-time decision making and parameter updates, but also offers an intermediate
processing step via the attached Linux server. While the pulse processing unit (PPU) can make decisions
live during the experiment step-by-step with the lowest possible latency, the attached server can perform
demanding calculations, like correlations or FFT, still within the time-scale of the experiment. This further
empowers the OPX+ decision making capabilities and allows for complex and dynamic experimental
protocols, while sending to the user’s PC only the results deemed necessary.

For example, when little is known beforehand about the signal to be measured, one could greatly benefit
from a sequence that smoothly transitions from fast sampling rate and low accuracy to a more precise
narrow-range approach, focusing on the signal’s frequency. This adaptive change, based on e.g. FFT
calculations, can be performed in the measurement’s time-scale with the OPX+ dynamic calculations and
parameter updates.

STREAM PROCESSING WITH THE OPX+

[1] Degen, C. L., et. al. Reviews of modern physics 89.3 (2017): 035002.

[2] Abobeih, M. H., et al. Nature 576.7787 (2019): 411-415.

[3] Bradley, Conor E., et al. Physical Review X 9.3 (2019): 031045.

[4] Schmitt, Simon, et al. Science 356.6340 (2017): 832-837.

[5] Boss, Jens M., et al. Science 356.6340 (2017): 837-840.

[6] Neumann, Philipp, et al. Science 329.5991 (2010): 542-544.

References

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

RUN STATE OF THE ART EXPERIMENTS WITH EASE

OPX+

PULSE PROCESSING UNIT
ACHIEVE THE FASTEST TIME TO RESULTS

QUA
CODE QUANTUM PROGRAMS SEAMLESSLY

The Quantum
Orchestration Platform
AN END TO END QUANTUM CONTROL SOLUTION TO DRIVE
THE FASTEST TIME TO RESULTS, AT ANY SCALE

An architecture designed from the ground up for quantum
control, the OPX+ lets you run the quantum experiments of your
dreams right from the installation. With a quantum feature-
rich environment, the OPX+ is built for scale and performance.
Now, you can run the most complex quantum algorithms and
experiments in a fraction of the development time.

Within the OPX+ is the Pulse Processing Unit, QM’s leading-edge
quantum control technology. Progress with incomparable speed
and extreme flexibility. Run even the most demanding experiments
efficiently, with the fastest runtimes and the lowest latencies in
the industry, including quantum protocols that require real-time
waveform generation, real-time waveform acquisition,
real-time comprehensive processing, and control flow.

Implement the protocols of your wildest dreams as easily as writing
pseudocode. Designed for quantum control, QUA is the first universal
quantum pulse-level programming language. Code even the most
advanced programs and run them with the best possible performance.
Natively describe your most challenging experiments, from complex
AI-based multi-qubit calibrations to multi-qubit quantum error
correction.

*All of the information above is also valid for the OPX

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Real-Time Waveform
Generation

• Fully parametrized: length,
 frequency, phase (relative &
 absolute), amplitude, 	

 bandwidth, chirp

• Compensations: Crosstalk

 matrix, FIR and IIR filters

• And many more

Real-Time
Processing
Turing complete:
- Basic arithmetics
- Evaluation of
 trigonometric functions
- Vector operations
- Casting of variable
 types
- And more (Turing
 complete)

Real-Time ‘Quantum’ Estimations

• State estimations

• Error estimations

• Bayesian estimations

• Correlation functions

• Neural nets based estimations

YOUR PROTOCOLS LIVE IN THIS PHASE SPACE

• Easily express quantum algorithms and experimental protocols that comprise all of the above.

• Seamlessly sync measurements, real-time calculations, and pulses of different quantum elements.

• Loop over a wide range of parameters in real-time, including intermediate frequencies, amplitudes,

 phases, delays, integration parameters, measurement axes, etc.

• Use if/else and switch-case statements to condition operations in real time (real time feedback).

• Define procedures (macros) to be reused in the code and access an extensive family of libraries.

THE QUANTUM ORCHESTRATION PLATFORM COVERS THIS SPACE!

Fully Parametric
Waveform Generation

Waveform Acquisition
and Manipulation

Real-Time
Processing

Comprehensive
Control Flow

Real-Time Multi-Qubit Feedback

• Qubit stabilization & tracking

• Quantum error correction

• And many more

Real-Time
Measurements

• High fidelity analog to
 digital conversion

• General integration &
 demodulation

• Weighted Integrations
 accumulated integrations,
 sliced integrations, etc.

• Time Tagging, TTL counting

Real-Time
Control Flow

• If/else

• For loops

• While loops

• Switch case

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

About Quantum Machines
Quantum Machines (QM) drives quantum breakthroughs that accelerate the
path towards the new age of quantum computing. The company’s Quantum
Orchestration Platform (QOP) fundamentally redefines the control and operations
architecture of quantum processors.

The full-stack hardware and software platform is capable of running even the most
complex algorithms right out of the box, including quantum error correction, multi-
qubit calibration, and more. Helping achieve the full potential of any quantum
processor, the QOP allows for unprecedented advancement and speed-up of
quantum technologies as well as the ability to scale into the thousands of qubits.
Visit us at: www.quantum-machines.co

*The information contained in this document is confidential and intended solely for its addressees. The information is the property of QM

Technologies Inc. (“QM”) and may contain legally privileged information. QM may make changes to specifications and product descriptions at

any time, and this document does not represent a commitment on the part of QM, but is supplied solely for allowing the intended recipients

hereof to consider a general business engagement with QM. This information is subject to change without notice. © QM Technologies Inc.

If you wish to learn more:
info@quantum-machines.co

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
http://www.quantum-machines.co
mailto:info%40quantum-machines.co?subject=

