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USE CASE

QUANTUM ORCHESTRATION FOR 
NV & Other Defect Centers

Find out how you can leverage the Quantum Orchestration 

Platform to perform groundbreaking experiments in your NV 

center lab with these real-life use cases.
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DYNAMICAL DECOUPLING (XY8-N AS AN EXAMPLE)

NV centers are excellent systems for sensing. Not 

only are they highly sensitive to various types of 

forces (magnetic, electric, strain, etc.), but their 

small size allows for spatial resolutions of a few 

nm. In this example, we want to demonstrate how 

one of the most common sensing methods with NV 

centers, namely dynamical decoupling (DD), can 

be effortlessly implemented using the Quantum 

Orchestration Platform (QOP). It’s a great showcase 

of the real-time paradigm the OPX+ operates on, 

which removes the need for creating long arbitrary 

waveforms before starting the experiment.

Dynamical decoupling is typically used in 

quantum control to prolong the coherence of 

the spin system. This is achieved by a periodic 

sequence of control pulses, which refocus the 

environmental effects and hence attenuate 

noise. Since phases accumulated from frequency 

components close to the pulse spacing are being 

enhanced, DD effectively acts as a frequency 

filter. Thus, the technique can be used for noise 
spectroscopy.

Fig. 1 shows the experimental setup. The OPX+ is 

controlling the laser via a digital marker output. 

Two analog outputs of the OPX+ are used for IQ 

modulation of the MW signal controlling the NV 

spin. The output pulses of the APD, which collects 

the fluorescence of the NV center, are sent to an 
analog input of the OPX+ for time tagging.

In this example, we want to focus on one of 

the most common DD sequences used for NV-

based sensing, namely the XY8-N sequence. The 

XY8-N sequence consists of the following pulse 

Fig. 1 Experimental setup for dynamical decoupling using the NV center in diamond. The MW control signal is generated 

using IQ modulation with two analog outputs of the OPX+.
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)N, where 

N is the so-called XY8 order and the indices x and 

y correspond to the rotation axis in the rotating 

frame. The pulses are spaced equidistantly with a 

spacing of τ. The entire sequence is shown in Fig. 

2a.

The XY8 sequence is applied after the NV electron 

spin is brought into a superposition state |−1>+|0> 
by an initial (π/2)

x
-pulse. After the decoupling 

sequence, the spin state is mapped onto the spin 

population by a final (π/2)
x
-pulse (see Fig. 2a). 

Finally, the NV center is read out optically by a 

laser pulse, which simultaneously repolarizes the 

electron spin state. Fig. 2b shows the filter function 
of the sequence. The central frequency ν=1/2τ is 

defined by the periodicity of the pulses, while the 
width Δν=1/Nτ depends on the total acquisition 

time T=Nτ

Fig. 2a XY8-N sequence with waiting time τ.

Fig. 2b Filter function of the XY8-N sequence. The central frequency is determined by the waiting time τ, while the width 

is defined by the total acquisition time T=Nτ.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=


WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

The example QUA program runs a 
for_each

 loop, 

which iterates through a given list of τ values. 

Additionally, an outer 
for

 for loop averages over 

many sweeps. In QUA, we can define macros that 

make code shorter and clearer. In this example, 

we use the macro  
xy8_n(n)

 to create all the 

XY8 sequence pulses in a single line. The macro 

dynamically creates the XY8 sequence according 

to the order specified in parameter n. The macro 

creates all pulses and wait times by looping over 

another helper macro, 
xy8_block()  , which 

creates the 8 pulses of a single XY8 block. The 

πy pulses are generated by rotating the frame of 

the spin using the built-in  
frame_rotation()   

function. Then, the frame is reset back into its 

initial state by calling 
reset_frame() .

from qm.QuantumMachinesManager import QuantumMachinesManager

from qm.qua import *

from qm import SimulationConfig

import matplotlib.pyplot as plt

import numpy as np

 

 

NV_IF = 100e6

t_min = 4

t_max = 100

dt = 1

t_vec = np.arange(t_min, t_max, dt)

 

repsN = 3

simulate = True

 

 

with program() as xy8:

    # Realtime FPGA variables

    a = declare(int)  # For averages

    i = declare(int)  # For XY8-N

    t = declare(int)  # For tau

    times = declare(int, size=100)  # Time-Tagging

    counts = declare(int)  # Counts

    counts_ref = declare(int)

    diff = declare(int)  # Diff in counts between counts & counts_ref

    counts_st = declare_stream()  # Streams for server processing

    counts_ref_st = declare_stream()

    diff_st = declare_stream()
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    with for_(a, 0, a < 1e6, a + 1):

        play("laser", "qubit")

 

        with for_(t, t_min, t <= t_max, t+dt):  # Implicit Align

            # Play meas (pi/2 pulse at x)

            play("pi_half", "qubit")

            xy8_n(repsN)

            play("pi_half", "qubit")

            measure("readout", "qubit", None, time_tagging.raw(times, 300,  

   counts))

            # Time tagging done here, in real time

 

            # Plays ref (pi/2 pulse at -x)

            play("pi_half", "qubit")

            xy8_n(repsN)

            frame_rotation(np.pi, "qubit")

            play("pi_half", "qubit")

            reset_frame('qubit')  # Such that next tau would start in x.

            measure("readout", "qubit", None, time_tagging.raw(times, 300,  

   counts_ref))

            # Time tagging done here, in real time

 

            # save counts:

            assign(diff, counts - counts_ref)

            save(counts, counts_st)

            save(counts_ref, counts_ref_st)

            save(diff, diff_st)

 

    with stream_processing():

        counts_st.buffer(len(t_vec)).average().save("dd")

        counts_ref_st.buffer(len(t_vec)).average().save("ddref")

        diff_st.buffer(len(t_vec)).average().save("diff")

 

 

qmm = QuantumMachinesManager()

qm = qmm.open_qm(config)

job = qm.execute(xy8, duration_limit=0, time_limit=0)

 

 

def xy8_n(n):

    # Assumes it starts frame at x, if not, reset_frame before

    wait(t, "qubit")
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QUA code for the XY8-N dynamical decoupling sequence

 

    xy8_block()

 

    with for_(i, 0, i < n - 1, i + 1):

        wait(2 * t, "qubit")

        xy8_block()

 

    wait(t, "qubit")

 

 

def xy8_block():

    play("pi", "qubit")  # 1 X

    wait(2 * t, "qubit")

 

    frame_rotation(np.pi / 2, "qubit")

    play("pi", "qubit")  # 2 Y

    wait(2 * t, "qubit")

 

    reset_frame("qubit")

    play("pi", "qubit")  # 3 X

    wait(2 * t, "qubit")

 

    frame_rotation(np.pi / 2, "qubit")

    play("pi", "qubit")  # 4 Y

    wait(2 * t, "qubit")

 

    play("pi", "qubit")  # 5 Y

    wait(2 * t, "qubit")

 

    reset_frame("qubit")

    play("pi", "qubit")  # 6 X

    wait(2 * t, "qubit")

 

    frame_rotation(np.pi / 2, "qubit")

    play("pi", "qubit")  # 7 Y

    wait(2 * t, "qubit")

 

    reset_frame("qubit")

    play("pi", "qubit")  # 8 X
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For the NV centers optical readout, we utilize the 

built-in time tagging functionality of the QOP. A 

call of the  
measure

 statement starts the time 

tagging. A time tag for each detected pulse from 

the APD is saved into the real-time array  
times  , 

and the total number of detected photons is saved 

into the integer variable  
counts . Concurrently, 

the  
measure  statement generates a readout 

pulse, which here is the trigger pulse going to the 

laser system. The same sequence is repeated 

a second time with a final (π/2)−x. The photons 

detected during this are saved in the variable   
counts_ref

 and act as a reference signal.

A known issue with pulsed DD, is the emergence of 

spurious harmonics due to the pulses’ finite length. 

A theoretically “easy” solution is to introduce a 

random global phase to each iteration of the 

experiment [1]. This solution quickly becomes very 

taxing when trying to utilize it by a-priory waveform 

creation, because the number of repetitions we 

need to upload has to be very large (N 100) for 

Second, we’ll add a line assigning a new random phase for each iteration using the command 

Random().rand_fixed()   which returns a random number between 0 and 1.

At the end of each loop, we save the photon 

counts into a so-called stream, using the  
save()  function. These streams allow streaming 

data to the client PC while the program is still 

running. The stream processing feature also 

offers a rich library of data processing functions 

which can be applied to streams. The QOP server 

performs the processing before sending it to the 

client PC. It can significantly reduce the amount 

of transferred data by limiting it to the user’s 

preferred result. In this example, we use the

average()  function to average the data while 

streaming.

the phase to be considered random. As the OPX+ 

generates this sequence on the fly, we can utilize 

its internal random number generator to easily 

create this randomized XY8-N sequence by 

adding a couple lines of code to the one above: 

First, we’ll define an additional variable ϕ.

ADDING A RANDOMIZED PHASE TO THE XY8 SEQUENCE

... 

assign(phi,Random().rand_fixed()*2*np.pi) 

play("pi_half", "qubit") 

xy8_n(repsN,phi) 

...
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phi = declare(fixed,value=0) # Random phase

...
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The last step would be to add a frame_rotation()  command before each πx and reset_frame()  at 

the end of the xy8_block macro.

ACTIVE INITIALIZATION AND SINGLE SHOT READOUT 
OF A NUCLEAR SPIN
One of the NV’s major strengths is its ability to 

utilize its nuclear spin environment as a quantum 

register for complex protocols that involve more 

than a single qubit. This utility was already shown 

in many experiments, including quantum sensing 

[2,3], quantum computation [4], and quantum 

networks [5]. All these experiments share the need 

to initialize the nuclear spin to a known state, and 

efficiently readout that state via manipulation of 

the NV electron spin. In order to actively initialize 

the nuclear spin, we first need to be able to 

determine its state, so we will first look at the 

single-shot readout (SSRO) [6].

Here we will discuss a protocol for a SSRO on the 

intrinsic 14
N nuclear spin. In general the single-

shot readout consists of a conditional rotation on 

the NV, a laser pulse to read its state, and then 

repeating these two steps N times to accumulate 

enough photons for state separation. As the 
14

N is a spin 1, two consecutive SSRO steps are 

necessary. In the first SSRO, the conditional π pulse 

will be performed if the nuclear spin is at the |0N> 
sublevel. This will tell us whether the nuclear spin 

is at the |0N> sublevel or at the |±1N> sublevels. If 
we are at |0N>, the readout is done, if not, then a 

second SSRO needs to be initiated to determine 

whether the nuclear spin is at the |+1N> or |−1N> 
sublevel. The ability to skip the second SSRO 

step exemplifies the OPX+’s capabilities, as 

without real-time measurement based decision 

making, one could waste precious nuclear spin 

coherence time on an unnecessary step.

As the SSRO is usually part of a larger sequence, 

the example QUA program is written as a macro 

named SSRO() , making it easier to use for 

different protocols. The basic building block 

of the macro is composed from a conditional 

rotation, defined by the CnNOTe()  macro and 

the measure()  command.

Let’s first start with the most basic building 

block: the CnNOTe gate on the electron spin. This 

gate inverts the electron spin only for a specific 

nuclear spin state. This is achieved by choosing 

the correct frequency in the hyperfine resolved 

ODMR spectra of the NV center. In the QUA script 

below, we define this gate operation in function  

CnNOTe() . The CnNOTe()  macro accepts the 

nuclear spin state for which the electron spin 

should be flipped as an integer  

... 

frame_rotation(phi, "qubit") 

play("pi", "qubit")  # 8 X 

reset_frame("qubit") 

...
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(-1: |−1n>, +1:  |+1n>, 0:  |0n>). It calculates the 
corresponding new intermediate frequency 

according to the given nuclear spin state by 

adding or subtracting the hyperfine splitting value 

(hf_splitting ≈ 2.16 MHz) from the central frequency 

f0 of the NV centers hyperfine spectra. We use the 

built-in QUA function update_frequency()  to 

update the quantum element ‘sensor’ frequency, 

The measure()  statement has a time tagging 

module, which counts the arriving photons while 

simultaneously executing the laser pulse. This 

module allows time tagging of pulses via the 

analog inputs of the OPX+. The arrival times of all 

photons detected during the detection window 

are saved into the real-time array time tags. 

Additionally, the total number of detected photons 

is saved into the variable counts. These two 

operations are written within a for loop that runs 

for N times to accumulate enough photons for 

state differentiation.

which corresponds to the sensor spin. As a 

result, all of the following pulses played to this 

quantum element will be at this new frequency. 

Finally, we play a π-pulse to the sensor spin 

using the play  command, which enables us 

to dynamically update the pulse’s amplitude 

and duration, to reduce the pulse’s frequency 

bandwidth.

Once the for loop is over, we use the if statement 

to compare the total number of photons against 

a predefined threshold, SSRO_threshold. If the 

number of photons is lower than the threshold, 

the nuclear spin is at the |0N>, and we can 
continue with the experiment. If the number of 

photons is higher than the threshold, we need to 

determine whether the nuclear spin is in the

|+1N> or |−1N> states. This is done by repeating the 
SSRO, this time with the CnNOTe()  receiving the 

integer 1. After the loop, we know the nuclear spin 

is at the |+1N> if the photon count is lower than 
the threshold, and |−1N> if it is higher.

def CnNOTe(condition_state): 

 """ 

 CNOT-gate on the electron spin. 

 condition_state is in [-1, 0, 1] for a spin 1 nuclear or [-1, 1] for a  

 spin half nuclear and gives the nuclear spin 

 state for which the electron spin is flipped. 

 """ 

 align(*all_elements) 

 update_frequency("sensor", NV_IF + condition_state * hf_splitting) 

 play("pi_x"*amp(0.1), "sensor", duration= (pi_length/4)*10) 

 update_frequency("sensor", NV_IF) 

 align(*all_elements)
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QUA Code for the CnNOTe macro
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def SSRO(N, result): 

   """Determine the state of the nuclear spin"""

   i = declare(int) 

   res_vec = declare(int, size=10) 

   counts = declare(int) 

   ssro_count = declare(int,value=0) 

   # run N repetitions 

   with for_(i, 0, i < N, i + 1): 

       wait(100, "sensor") 

       CnNOTe(0) 

       measure( 

           "readout", 

           "sensor", 

           None, 

           time_tagging.analog(res_vec, 300, counts), 

       ) 

       assign(ssro_count, ssro_count + counts) # sums up the total photons  

  detected during the SSRO 

   # compare photon count to threshold and save result in variable "state" or  

  continue to the next step 

   with if_(ssro_count < SSRO_threshold): 

       assign(result, 0) 

   with else_(): 

       assign(ssro_count, 0) 

       with for_(i, 0, i < N, i + 1): 

           wait(100, "sensor") 

           CnNOTe(1) 

           measure( 

               "readout", 

               "sensor", 

               None, 

               time_tagging.analog(res_vec, 300, counts), 

           ) 

           assign(ssro_count, ssro_count + counts) # sums up the total photons  

   detected during the SSRO 

       # compare photon count to threshold and save result in variable "state" 

       with if_(ssro_count < SSRO_threshold): 

           assign(result, 1) 

       with else_(): 

           assign(result, -1)
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QUA Code for the single shot readout macro in the case of 
14

N nuclear spin.
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The OPX+ real-time capabilities become even 

more prominent when one wants to initialize the 

nuclear spin to a specific state (|0N> for example). 
Instead of postselection, which wastes time 

performing unwanted experiments or employing 

an elaborate Swap gate (as it is a 3 level system), 

which takes a long time and usually has limited 

fidelity, the OPX+ enables the user to precisely 

perform the necessary operation based on the 

nuclear spin SSRO result.

In the case of nuclear spin initialization, we would 

start, like above, with a SSRO on the |0N> sublevel. If 
the nuclear spin is at that level, we are done. If not, 

a second SSRO is performed to determine whether 

the nuclear spin is at the |+1N> or |−1N>. Based on 

the result of the second SSRO, an RF π pulse on 

resonance with the desired transition can then 

be applied on the nuclear spin to bring it back 

to the |0N>. If a π pulse was performed, we can 

repeat the process to make sure the nuclear spin 

is in the desired state.

The code example is written in the

init_nuclear_spin()  , which starts with 

the SSRO()  macro to initially determine the 

nuclear spin state. Then, if it is not in the |0N>, 
the code enters an indeterministic while loop, 

until the SSRO()  determines the nuclear spin is 

in the |0N> state. After each SSRO, a selective π 

pulse will be applied to the nuclear spin with a 

frequency determined by the result of the SSRO.

def init_nuclear_spin(): 

 state = declare(int) 

 SSRO(N_SSRO, state) 

 with while_(state == ~0): 

  with if_(state == -1): 

   # assigning a frequency on resonanace with the 0 -> -1    

    nuclear transition

   update_frequency("memory", memory_IF_m1) 

   play("pi_x", "memory") 

   update_frequency("memory", memory_IF_p1) 

  with else_(): 

   play("pi_x", "memory")

   SSRO(N_SSRO, state)
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QUA Code for active initialization of the 
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N nuclear spin.
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NANOSCALE NMR WITH A NUCLEAR SPIN MEMORY

Fig. 3  Setup for nanoscale NMR using a nuclear spin memory. The MW control sequence for the electron spin is created using IQ 
modulation with two analog outputs of the OPX+ (blue). The RF signal for nuclear spin manipulation is directly synthesized with the 
OPX+ (orange). The pulses of the APD are time-tagged by the OPX+ via one of the analog inputs (red).

into the phase of a superposition state of the NV 

electron spin state [8]. We can achieve this, for 

example, by using Ramsey spectroscopy, Hahn 

echo sequences or dynamical decoupling. The 

spectral resolution of these methods is limited by 

the duration of the phase accumulation period, 

and consequently, is limited by the coherence 

time T2
sens of the sensor spin. It’s possible 

to overcome this limitation by performing 

correlation spectroscopy [9] . Here, the signal 

is generated by correlating the results of two 

subsequent phase accumulation sequences 

separated by the correlation time TC. During 

With the QOP and QUA, we can write even the 

most complex experiments as short and clear 

single programs. To demonstrate this, let’s look 

at an NV-based NMR experiment that utilizes a 

nuclear spin as an additional memory [2,3]. It 

is possible to drastically enhance the spectral 

resolution by using the long lifetime of the 

nuclear spin as a resource. This technique allows 

nanoscale NMR with chemical contrast, e.g. [7].

NMR using NV centers is typically based on 

imprinting the Larmor precession of sample spins 
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nuclear spin of the NV center is a perfect 

candidate to act as this memory spin. It is 

strongly coupled to the NV center electron spin, 

which acts as the sensor, while its coupling 

to other electron or nuclear spin is negligible. 

When applying a strong bias magnetic field 
(3T) aligned along the NV-axis, we can achieve 

memory lifetimes T2
mem on the order of several 

seconds. In this example, we assume that the 

used NV center incorporates a 14N nuclei with a 

1-spin and the eigenstates |+1n>, |−1n> and |0n>.

the correlation time, the phase information is 

stored (partially) in the polarization of the sensor 

spin. Hence, the possible correlation time, and 

therefore the spectral resolution, is limited by the 

spin-relaxation time T1
sens (>T2

sens) of the sensor. 

It’s possible to improve this even further by 

utilizing a memory spin, which has a much 

longer longitudinal lifetime. In the correlation 

spectroscopy experiment we discuss here, 

the information is stored on the nuclear spin 

(memory) instead of on the NV spin (sensor). 

As a result, the achievable correlation time is 

significantly increased. The intrinsic nitrogen 

Fig. 4    A sequence of NMR with memory spin. It consists of active initialization of the memory spin, encoding, sample manipulation, 

decoding, and a final readout of the memory spin via single-shot readout.

Fig 4 shows the complete sequence. It consists 

of five steps: initialization, encoding, sample 
manipulation, decoding, and readout. The 

encoding aims to encode the sample sensor 

interaction into the spin population of the memory 

spin. First, the memory spin is brought from its 

initial state |0n> into a superposition state by a 
π/2-pulse. Next, entanglement between sensor 

and memory is established for two phase-

accumulation windows. The entanglement is 

created and destroyed by nuclear spin state 

selective π-pulses performed on the sensor spin. 

While the sensor and memory spins are entangled, 

the interaction with the sample spins leads to 

a phase accumulation on the memory spin 

superposition state. In between the two phase-

accumulation periods, the sample is actively 

flipped by a resonant π-pulse. The final phase 
Δϕ=ϕ2–ϕ1, where ϕ1 and ϕ2 are the accumulated 

phases during the first and second accumulation 
window respectively, is then mapped into the 

memory spin population by a final π/2-pulse 

on the memory spin. The decoding sequence is 

identical, except for the conditions of the CnNOTe 

gates on the sensor spin.

For initialization and readout, we use the macros

SSRO()  and  init_nuclear_spin() , that are 

described above.
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from qm.qua import * 

from qm.QuantumMachinesManager import QuantumMachinesManager 

from configuration import * 

import numpy as np 

  

all_elements = ["sensor", "sample", "memory"] 

N_avg = 1e6

N_SSRO = 5000

hf_splitting = 2.16e6  # N14 hyperfine splitting (NV_IF is moved by -1.08e6) 

t_e = 2000

tau_vec = [int(i) for i in np.arange(1e3, 5e4, 5e3)] 

SSRO_threshold = 200

  

  

with program() as prog: 

    """ 

    Main script 

    """

    n = declare(int) 

    tau = declare(int) 

    result_vec = declare(int, size=len(tau_vec)) 

    c = declare(int) 

  

    with for_(n, 0, n < N_avg, n + 1): 

        assign(c, 0) 

        with for_each_(tau, tau_vec): 

            init_nuclear_spin() 

            encode(t_e) 

            align(*all_elements) 

            play("pi_2", "sample") 

            wait(tau, "sample") 

            play("pi_2", "sample") 

            align(*all_elements) 

            play("laser", "sensor") 

            decode(t_e) 

            SSRO(N_SSRO, result_vec[c]) 

            assign(c, c + 1) 

  

    with for_(n, 0, n < result_vec.length(), n + 1):

        save(result_vec[n], "result")

def init_nuclear_spin():
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 state = declare(int)

 SSRO(N_SSRO, state)

 with while_(state == ~0):

  with if_(state == -1):

   # assignig a frequency on resonanace with the 0 -> -1  

    nuclear transition

            update_frequency("memory", memory_IF_m1) 

            play("pi_x", "memory") 

            update_frequency("memory", memory_IF_p1) 

        with else_(): 

            play("pi_x", "memory") 

        SSRO(N_SSRO, state) 

  

  

def SSRO(N, result): 

    """Determine the state of the nuclear spin"""

    i = declare(int) 

    res_vec = declare(int, size=10) 

    counts = declare(int) 

    ssro_count = declare(int,value=0) 

  

    # run N repetitions 

    with for_(i, 0, i < N, i + 1): 

        wait(100, "sensor") 

        CnNOTe(0) 

        measure( 

            "readout", 

            "sensor", 

            None, 

            time_tagging.analog(res_vec, 300, counts), 

        ) 

        assign(ssro_count, ssro_count + counts) # sums up the total photons  

   detected during the SSRO 

    # compare photon count to threshold and save result in variable "state"  

   or continue to the next step 

    with if_(ssro_count < SSRO_threshold): 

        assign(result, 0) 

    with else_(): 

        assign(ssro_count, 0) 

        with for_(i, 0, i < N, i + 1): 

            wait(100, "sensor") 

            CnNOTe(1) 

            measure( 

                "readout", 
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                "sensor", 

                None, 

                time_tagging.analog(res_vec, 300, counts), 

            ) 

            assign(ssro_count, ssro_count + counts) # sums up the total  

    photons detected during the SSRO 

        # compare photon count to threshold and save result in variable  

    "state"

        with if_(ssro_count < SSRO_threshold): 

            assign(result, 1) 

        with else_(): 

            assign(result, -1) 

  

  

def CnNOTe(condition_state): 

    """ 

    CNOT-gate on the electron spin. 

    condition_state is in [-1, 0, 1] for a spin 1 nuclear or [-1, 1] for a  

  spin half nuclear and gives the nuclear spin 

    state for which the electron spin is flipped. 

    """ 

    align(*all_elements) 

    update_frequency("sensor", NV_IF + condition_state * hf_splitting) 

    play("pi_x"*amp(0.1), "sensor", duration= (pi_length/4)*10) 

    update_frequency("sensor", NV_IF) 

    align(*all_elements) 

  

  

def encode(t): 

    """ 

    Play the encoding sequence with wait time t. 

    """ 

    align(*all_elements) 

    reset_frame("memory") 

    play("pi_2_x", "memory") 

    CnNOTe(0) 

    wait(t // 4, "sensor") 

    CnNOTe(0) 

    play("pi", "sample") 

    CnNOTe(1) 

    wait(t // 4, "sensor") 

    CnNOTe(0) 

    play("pi_2_y", "memory") 
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QUA code for NMR with a nuclear spin memory as detailed in figure 4.

    align(*all_elements) 

  

  

def decode(t): 

    """ 

    Play the decoding sequence with wait time t. 

    """

    align(*all_elements) 

    play("pi_2_x", "memory") 

    CnNOTe(1) 

    wait(t // 4, "sensor") 

    CnNOTe(0) 

    play("pi", "sample") 

    CnNOTe(1) 

    wait(t // 4, "sensor") 

    CnNOTe(1) 

    play("pi_2_y", "memory") 

    align(*all_elements) 

  

  

qmm = QuantumMachinesManager() 

qm = qmm.open_qm(config) 

job = qm.execute(prog)
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commands are complete, and so it aligns them in 

time.

Finally, the main script runs the whole sequence 

for different values of the waiting time of the 

Ramsey sequence played on the sample spin in 

a foreach
 loop. Additionally, the experiment is 

averaged over N_avg 
 repetitions by an outer 

for
 loop. The result of each measurement is 

saved into the corresponding item of the result 

vector result_vec . Then, the result vector is 

saved element-wise using the save()  function 

and streamed to the user PC.

The encoding (decoding) sequence is defined in 
the function encode()  ( decode() ). The different 

pulses are executed using play
 statements 

and the  CnNOTe()  macro. The QUA-function  

align()  is used to define the timing of the 
individual pulses. One of the basic principles of 

QUA is that every command is executed as early 

as possible. Hence, when not specified otherwise, 
pulses played on different quantum elements 

are played in parallel. To ensure that pulses play 

in a specific order, we use the built-in align()  

function. This function causes all specified 
quantum elements to wait until all previous 
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“Replacing 3 devices with one synchronized, orchestrated machine 

tremendously simplifies lab workflow. Now, our pulse sequences run in a fraction 
of the time of any other device combo. Plus, we can talk to the FPGA in human-
speak to run real-time calculations that were too complicated before! Along with 
the yoga-level flexibility of QM’s engineers, the OPX truly is a trailblazer.”

Dr. Amit Finkler,  Weizmann Institute of Science

“Dedicated hardware for controlling and operating quantum bits is something we 

have all been dreaming of. Quantum Machines has answered this call by allowing 

us and others in the field to scale up with ease and with far greater functionality 
than was ever possible”

Prof. Amir Yacoby, Harvard University
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RUN STATE OF THE ART EXPERIMENTS WITH EASE

OPX+ 

PULSE PROCESSING UNIT
ACHIEVE THE FASTEST TIME TO RESULTS

QUA
CODE QUANTUM PROGRAMS SEAMLESSLY

The Quantum 
Orchestration Platform
AN END TO END QUANTUM CONTROL SOLUTION TO DRIVE 
THE FASTEST TIME TO RESULTS, AT ANY SCALE

An architecture designed from the ground up for quantum 

control, the OPX+ lets you run the quantum experiments of your 

dreams right from the installation. With a quantum feature-

rich environment, the OPX+ is built for scale and performance. 

Now, you can run the most complex quantum algorithms and 

experiments in a fraction of the development time. 

Within the OPX+ is the Pulse Processing Unit, QM’s leading-edge 

quantum control technology. Progress with incomparable speed 

and extreme flexibility. Run even the most demanding experiments 
efficiently, with the fastest runtimes and the lowest latencies in 
the industry, including quantum protocols that require real-time 

waveform generation, real-time waveform acquisition,  

real-time comprehensive processing, and control flow. 

Implement the protocols of your wildest dreams as easily as writing 

pseudocode. Designed for quantum control, QUA is the first universal 
quantum pulse-level programming language. Code even the most 

advanced programs and run them with the best possible performance. 

Natively describe your most challenging experiments, from complex 

AI-based multi-qubit calibrations to multi-qubit quantum error 

correction.

*All of the information above is also valid for the OPX
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Real-Time Waveform
Generation 

•  Fully parametrized: length,  
   frequency, phase (relative &  
   absolute), amplitude,  

   bandwidth, chirp

•  Compensations: Crosstalk  

   matrix, FIR and IIR filters
•  And many more

Real-Time
Processing

Turing complete:
- Basic arithmetics 
- Evaluation of  
   trigonometric functions 
- Vector operations 
- Casting of variable  
   types 
- And more (Turing     
   complete)

Real-Time ‘Quantum’ Estimations 

•  State estimations

•  Error estimations

•  Bayesian estimations
•  Correlation functions

•  Neural nets based estimations

YOUR PROTOCOLS LIVE IN THIS PHASE SPACE

• Easily express quantum algorithms and experimental protocols that comprise all of the above.

• Seamlessly sync measurements, real-time calculations, and pulses of different quantum elements. 

• Loop over a wide range of parameters in real-time, including intermediate frequencies, amplitudes, 

   phases, delays, integration parameters, measurement axes, etc.

• Use if/else and switch-case statements to condition operations in real time (real time feedback).

• Define procedures (macros) to be reused in the code and access an extensive family of libraries.

THE QUANTUM ORCHESTRATION PLATFORM COVERS THIS SPACE!

Fully Parametric
Waveform Generation

Waveform Acquisition
and Manipulation

Real-Time
Processing

Comprehensive
Control Flow

Real-Time Multi-Qubit Feedback

•  Qubit stabilization & tracking

•  Quantum error correction

•  And many more

Real-Time 
Measurements 

•  High fidelity analog to
   digital conversion

•  General integration &
   demodulation

•  Weighted Integrations
   accumulated integrations,
   sliced integrations, etc.

•  Time Tagging, TTL counting

Real-Time 
Control Flow 

•  If/else

•  For loops

•  While loops

•  Switch case
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About Quantum Machines
Quantum Machines (QM) drives quantum breakthroughs that accelerate the 

path towards the new age of quantum computing. The company’s Quantum 

Orchestration Platform (QOP) fundamentally redefines the control and operations 
architecture of quantum processors.

The full-stack hardware and software platform is capable of running even the most 

complex algorithms right out of the box, including quantum error correction, multi-

qubit calibration, and more. Helping achieve the full potential of any quantum 

processor, the QOP allows for unprecedented advancement and speed-up of 

quantum technologies as well as the ability to scale into the thousands of qubits. 

Visit us at: www.quantum-machines.co

*The information contained in this document is confidential and intended solely for its addressees. The information is the property of QM 
Technologies Inc. (“QM”) and may contain legally privileged information. QM may make changes to specifications and product descriptions at 
any time, and this document does not represent a commitment on the part of QM, but is supplied solely for allowing the intended recipients 

hereof to consider a general business engagement with QM. This information is subject to change without notice. © QM Technologies Inc.

If you wish to learn more:
info@quantum-machines.co
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