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USE CASE

Quantum Orchestration for 
Neutral Atoms

Discover a robust way to arrange, control, 

and experiment with neutral atoms using the

Quantum Orchestration Platform
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ATOM ARRANGEMENT

Neutral atom-based quantum computers use 

single atoms trapped in an array of optical 

tweezers as qubits. The atoms are probabilistically 

loaded into an array of traps (P~50%) from a 

background cloud of atoms. The trap is so tight 

that trapping two atoms in a single trap results in 

the loss of both, ensuring that each trap site has 

In this example, we will demonstrate the 

fundamental building block of 2D atom arrays, 

the arrangement of a single line of atoms. We 

will show how to use QUA, our high-level pulse 

either zero or one atom. This means that preparing 

a programmable initial configuration of 2D atom 
arrays requires shuffling atoms around after their 
initial loading. A tightly packed 2D array of atoms 

(seen in Figure 1) is a typical target configuration 
but other options are used [1] as they can be more 

suited for particular kinds of computations or 

simulations.

programming language, to program a sequence 

of pulses that arranges an array of atoms into any 

desired configuration using 2 DAC channels of the 
OPX+ device driving 2 acousto-optic deflectors.

Fig. 1  Before/after arrangement schematics of a 5×5 array of single atoms in a 2D tightly packed configuration.
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Fig. 2  The operating principle of an AOM or AOD. An incoming laser beam is diffracted by an RF signal traveling perpendicular 
to the direction of propagation of the laser beam.

SYSTEM SETUP

In order to understand the example at hand, it is first important to understand the system at hand. First, we 
will discuss the operating principles of AOM (see Figure 2).

same time and moving them to empty sites on the 

same row (or column). In such a way atoms are 

arranged row by row (or column by column). Faster 

arrangement protocols moving multiple lines 

in parallel are also possible but usually require 

additional AOD pairs.

We perform the ordering line by line by grabbing 

multiple atoms at a time and moving them to their 

target destination, similarly to what was done in 

[2]. Other strategies are possible, such as moving 

single atoms along 2D trajectories [3]. Here, we 

focus on parallelized multi-atom arrangement 

strategies as we believe they perform and scale 

better than moving atoms one by one. Trajectories 

are calculated in real-time based on the atoms’ 

positions while the pulse lengths and chirp rates 

are dynamically adjusted to be the fastest possible 

without resorting to heating up the atoms.

In general strokes, an acousto-optical modulator 

or deflector (AOM/AOD) is a 3-port device that 
accepts a laser beam in one of its ports and 

an RF signal on the other and outputs a laser 

beam diffracted by the RF signal. The coupling 

between light and RF is done via a crystal with 

piezoelectric properties. The result is a shift of 

the laser frequency and angle of refraction of the 

beam which are both proportional to the injected 

RF frequency.

The dynamic trap is often generated using 

two crossed acousto-optical modulators, one 

controlling the vertical position of the beam and 

the other the horizontal one. By playing a single 

RF tone to one of the AODs we select a row (or 

column) on which we want to arrange atoms. 

The second AOD RF channel can then contain a 

multitone signal, grabbing several atoms at the 
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by a separate readout system composed of a 

camera and a PC that performs simple ROI image 

processing to determine the atom occupation 

matrix. It is then transmitted directly to the OPX+ 

pulse processing unit (PPU) registers via a python 

API. The communication latency for a ~100 traps 

array is typically <5ms. Faster transfer protocols 

are also possible (contact us for more on this).

however, that can also be changed to an arbitrary 

frequency modulation trajectory which can be 

optimized to further speed up the arrangement.

As the code example below will show, QUA code is 

so intuitive and straightforward that it allows users 

to quickly build up more elaborate arrangement 

protocols (such as implementing atom reservoirs 

and real-time defect correction) which would be 

nearly impossible to quickly iterate on using low-

level FPGA programming.

As the number of qubits increases and arrays 

become larger, the lifetime of a single-filled 
configuration will drop down to levels where 
real-time correction of array defects will be 

necessary. For a background gas limited lifetime 

of ~10 seconds, a 256 qubit configuration [4] 
has a lifetime of only about 40ms which is 
comparable to the timescale for the camera 

exposure (usually around 20 ms) and shorter than 

a typical rearrangement sequence (50-100ms). 

This results in arrays with defects (missing atoms) 

after the first rearrangement pass thus requiring 
a second (shorter) rearrangement sequence to 

reach near-unity filling ratios. This means that for a 
given background pressure and laser power what 

will eventually limit the size of atom arrays is the 

efficiency of atom rearrangement. Thus, a powerful 
and flexible platform on which to quickly try out 
and iterate various arrangement protocols will be 

indispensable in the quest to make ever-larger 

qubit systems based on atom arrays.

We will discuss the basic building blocks of the 

system and then show a full QUA program example 

that assembles one line of atoms into the desired 

configuration. We will also give the raw DAC trace 
and spectrogram as sampled by a 1GSPS ADC 

so that you can be convinced that the desired 

signal was generated with no phase slips, jumps, 

or gaps. Determining the atoms’ position is done 

Although this example focuses on the 

arrangement itself, the initial optimization of 

the waveform profile is also usually taken care 
of by QUA using calibration protocols that 

find corrections for AOD and RF amplifier non-
linearities. It is also usually done by using off-the-

shelf Python optimization libraries together with 

a cost-function implemented in real-time using 

QUA. If real-time calibration/locking is required, a 
fully native QUA code that includes an optimizer 

running entirely on the PPU can be used. It will 

implement calibration and locking configurations, 
from simple PIDs to PDH locking schemes that can 

reach MHz bandwidths all directly coded from a 

high-level programming language. If you’d like to 

access a simulated environment where you can 

play around and test all this for yourself,

shoot us a line.

All the amplitude ramps and frequency chirps 

required to arrange atoms into a 10 sites array 

are programmed with ~100 lines of QUA code 

and compiled to a code running on our pulse 

processing unit (PPU). The OPX+ then generates on 

the fly a phase-coherent 1-5ms long pulse at 1GSPS 
that arranges 9 atoms into their desired target 

state. The power ramping (AM) and frequency 

chirping (FM) of the individual tweezer tones don’t 

have to be a simple linear ramp therefore we 

opted for a Blackman amplitude ramp as it usually 

provides better results and demonstrates that 

arbitrary AM profiles are possible. We have left the 
FM chirp to be a simple linear frequency ramp, 

ATOM ARRANGEMENT OPTIMIZATION
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Superimposed on top of this static trap array 

a second, dynamic, and deeper trap array is 

adiabatically turned on in order to capture 

individual atoms and shuffle them to their target 
destination. After the shuffling has been completed 
the dynamic array is adiabatically switched off and 

the atoms remain trapped in the static trap ready to 

perform quantum operations (see Figure 3).

A typical procedure for generating ordered atom 

arrays starts by creating a static array of traps 

by using a spatial light modulation device (SLM) 

which holographically generates an arbitrary array 

of traps (see Figure 2). Other methods to generate 

static traps are also possible but this choice makes 

little difference in what follows.

SEQUENCE DESCRIPTION

Fig. 3 Typical Atom Array Setup. The static trap beam is reflected from an SLM (Spatial Light Modulator) which imprints the static 
trap array on the beam. The static array beam then goes through a polarizing beam splitter (PBS) where it is combined with 
the dynamical tweezers beams used to perform the atom arrangement.

The static trap and tweezer beams then go through 

a dichroic mirror and beam shaping optics before 

entering the vacuum chamber to interact with the 

atoms. Light scattered from the atoms is diverted 

to an EMCCD camera via the dichroic mirror which 

takes images of the atom array, sends the images 

to a processor which does simple image processing 

The dynamical tweezers beams are created using 

a pair of RF signals originating from the OPX+. Each 

one of those signals (one for the horizontal and 

one for the vertical axes) goes through a power 

RF amplifier before going into an acousto optic 
deflector (AOD) where they both diffract a single 
laser beam to generate the multitude of tweezers 

used in the arrangement sequence.
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to determine the position of the atoms, and sends 

the atom locations via ethernet to registers on the 

OPX+ pulse processing unit (PPU). These registers 

Figure 4 shows a single tweezer time sequence 
for a single atom. A tweezer beam is then 

superimposed on the static trap by setting the 

appropriate RF tone frequency and the tweezer 

power is ramped over ~300 us so as to generate 

a trap potential that is deeper than the one 

generated by the static SLM trap.

The tweezer RF tone is then linearly chirped so as 

to sweep the beam position, the atom is trapped 

in the light field generated by the tweezer and is 
thus moved by the tweezer beam. The chirp rate 

must be lower than a certain threshold so as to 

avoid heating the atom during transport. Typical 

maximum transport velocities are in the order of 

10 nm/us . After the atom reaches its new desired 
trap position the chirping stops and the power is 

ramped back down (again in about 300us) so as 

are then accessible from QUA and the information 

about the position of the atoms is used to 

calculate the arrangement sequence in real-time.

to place the atom back into the static trapping 

potential generated by the SLM.

Multiple tweezer beams are superimposed thereby 

picking up and placing several atoms at the same 

time. In the simple example we show below we 

pick up and transport 9 atoms at a time but in 

general, more atoms can be moved in parallel 

and further optimization of the amplitude and 

frequency ramps can be performed to shorten the 

arrangement time.

At the end of the arrangement cycle, the 

dynamic tweezers’ power is ramped down and a 

second image of the atoms is taken to verify the 

arrangement and detect holes in the array which 

will be corrected in a second rearrangement cycle.

Fig. 4 Time Sequence Of A Single Tweezer Picking Up A Single Atom. At T=0 An Atom Is Trapped In The Static Trap (The One Made 
Using The SLM In This Example).
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The QUA code attached below performs steps 

3-6 which compose the heart of the arrangement 

protocol. The idea is to calculate in real-time the 

required tweezer detuning for each atom, find the 
maximum required detuning, and divide it by the 

maximal chirp rate (determined experimentally 

as the fastest chirp rate that does not heat the 

atoms) to get the chirp pulse length.

Each atom’s tweezer chirp rate is then calculated 

so that the atom moves to the desired destination 

site during the calculated chirp pulse length. So 

all atoms move together with the same pulse 

length, but each tweezer/atom has a different 
chirp rate resulting in different trajectories for 

the various atoms. The whole calculation period, 

prior to sending the pulses to the AODs takes 

approximately 11µs in this example. This is a 

negligible amount of time compared to other time 

scales in the process, thus leaving plenty of time to 

perform even more complicated calculations.

PROTOCOL IMPLEMENTATION

A common sequence for neutral atom-based quantum computers using the OPX+ (see Figure 3) is thus 

composed of the following steps:

1. Loading of atoms from a magneto-optical trap or optical molasses into the static trap. This loading is 

probabilistic and so only about 50% of the static trap sites are filled with atoms.
2. Taking an image of the loaded atom ensemble in the static trap array and determining the position of 

atoms using a straightforward region of interest image processing procedure and transfer the atom 

occupation matrix to the OPX+ pulse processing unit (PPU).

3. Determining the trajectories atoms need to perform in order to reach the target configuration (this is 
done live on the PPU).

4. Adiabatically turning on the dynamic tweezer trap array coming from 2 acousto-optic deflectors so as 
to capture only the atoms that need to be shuffled to new positions on the static trap.

5. Chirping the frequency of each tweezer beam in the dynamic tweezer trap independently so that all 

atoms reach their target position.

6. Ramping down the arrangement tweezer 1D array.

7. Changing the horizontal selector AOD frequency and repeat steps 3-6 until all rows have been 

arranged.

8. Taking another image to verify the target configuration is obtained and detect defects in the array.
9. Repeating the arrangement procedure to improve initialization efficiency.
10. Performing quantum operations.

11. Readout = Taking another image of the atoms and deduce the quantum state.
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from qm.qua import * 

from qm import SimulationConfig 

import numpy as np 

from time import sleep 

from qm.QuantumMachinesManager import QuantumMachinesManager 

import matplotlib.pyplot as plt 

import matplotlib.mlab as mlab 

from Array_sorting_config import * #this config file contains all the pulse 

parameters, the definition of the Blackman pulses as well as the initial 

frequency/phase values for the individual array sites 

  

qmm = QuantumMachinesManager() 

qm = qmm.open_qm(config) 

  

  

Row_size = 10

Max_Number_of_Tweezers = 9

Row_frequencies_list = [Row_selector_IF+Row_Spacing*x for x in range(Row_size)] 

  

  

# The size of the atom location vector is usually larger than the target one 

since you need to collect atoms from an array that is larger as the occupation 

has a probability of ~50% 

# We thus usually take the initial array size to be > 2x the number of atoms 

required in the target state so as to be sure we have enough atoms to completely 

fill in the target array

Atom_location_list = [1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 

0, 0, 1, 0, 1, 0, 0, 1, 0, 1] 

Atom_Target_List=[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

# The next commented line is an alternative atom target list containing atoms in 

every other site, we will test both target configurations on the same code 

#Atom_Target_List=[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0]

  

Atom_Target_List_bool = [bool(x) for x in Atom_Target_List] 

Target_frequencies_python = [int(Column_IF[i]) for i in range(len(Atom_Target_

List)) if Atom_Target_List[i]] 

  

with program() as order_atoms:

  

# Declaring some variables we will use later

Current_Row = declare(int, value=0) # the row we are currently arranging,  

 when arranging a 2D array this variable will be scanned in a for loop but  

 is kept constant at 0 for this single row example 

i = declare(int) 

j = declare(int) 

N_atoms_in_row = declare(int) 

N_atoms_in_row_target = declare(int) 

Row_Frequency = declare(int) 

Max_Detuning = declare(int) 

Min_Detuning = declare(int) 

Tweezer_Moves_Length = declare(int) 

OneOver_Tweezer_Moves_Length = declare(int) 

Number_of_Tweezers = declare(int) 

 

# Declaring some vectors we will use later
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Atom_location = declare(int, value=Atom_location_list) # a QUA vector 

containing the location of the atoms, the python vector 'Arom_location_list' 

is received from the image acquisition system 

Atom_Target_List_QUA = declare(int, value=Atom_Target_List)# a QUA vector 

containing the target destination of the atoms 

Row_Frequencies = declare(int, value=[int(x) for x in Row_frequencies_list]) 

# a QUA vector containing the frequencies corresponding to each row 

Phase_list = declare(fixed, value = Phases_List) # a QUA vector containing 

the phases of each site on the row 

Tweezers_phases = declare(fixed, value = Phases_List) # a QUA vector 

containing the phases of each tweezer, initialized to the original phase list 

but will be changed during runtime 

Column_frequencies = declare(int, value=Column_IF) # a QUA vector containing 

the frequencies of each column

Tweezers_frequencies = declare(int, value=[int(x) for x in np.zeros(Max_

Number_of_Tweezers)]) # a QUA vector containing the frequency/location of each 

tweezer, is initialized to be outside the AOM band and updated during runtime 

Amplitude_list = declare(fixed, value=[0.0] * Max_Number_of_Tweezers) # a QUA 

vector containing the amplitudes of each tone, will be either 0 or 1 but can 

be updated to reflect AOM/RF amplifier non linearities 

Tweezers_Detunings = declare(int, value = [int(x) for x in np.zeros(Max_

Number_of_Tweezers)]) # a QUA vector containing the detuning of each atom to 

his target, will be updated during runtime

Chirp_Rates = declare(int, value = [int(x) for x in np.zeros(Max_Number_of_

Tweezers)]) # a QUA vector containing the chirp rate for each tweezer, will 

be updated during runtime

Target_frequencies = declare(int, value = Target_frequencies_python) # a QUA 

vector containing the target frequencies/locations of the atoms 

Max_Number_of_Tweezers_QUA = declare(int, value = Max_Number_of_Tweezers) # 

the maximum allowed number of tweezers (the maximum number of atoms to move) 

 

assign(N_atoms_in_row, Math.sum(Atom_location)) # assign to N_atoms_in_row 

the total number of atoms to arrange 

assign(N_atoms_in_row_target, Math.sum(Atom_Target_List_QUA)) # The total 

number of atoms needed in the ordered row 

assign(Row_Frequency, Row_Frequencies[Current_Row]) # The current row index

 

# generating an integer vector of size=3 and storing three values in it (we 

could have done this with a for loop but since it's only 3 values we did it 

by hand)

Atoms_or_Targets = declare(int, size=3) 

assign(Atoms_or_Targets[0], N_atoms_in_row) # how many atoms in the current 

row?

assign(Atoms_or_Targets[1], Max_Number_of_Tweezers) # what's the max number 

of tweezers we are allowed to use? 

assign(Atoms_or_Targets[2], N_atoms_in_row_target) # how many atoms are in 

the target state? 

 

# how many tweezers do we need?

# The number of required tweezers for this row arrangement is the minimum of 

the number of atoms in the initial configuration, the number of final atoms 

needed in the ordered row and the number of tweezers available 

assign(Number_of_Tweezers, Math.min(Atoms_or_Targets)) # find the minimum 
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valur in Atoms_or_Targets and store the answer in Number_of_Tweezers 

  

# scan the atom locations and update the list of Tweezers frequencies

assign(j, 0) # assigning 0 to the j index 

assign(i, 0) # assigning 0 to the i index 

with while_(j < Number_of_Tweezers): # pick up only the amount of atoms you 

need to fill the target, if there aren't enough atoms or tweezers available 

then pick as many as you can

with if_(Atom_location[i] == 1): # if an atom is present in site i

assign(Amplitude_list[j], 1.0) # set the amplitude of the Tweezer j to 

active (=1), this can also be any other value and can be optimized to 

compensate for AOM and RF amplifier nonlinearities. We kept things simple 

here.

assign(Tweezers_frequencies[j], Column_frequencies[i]) # update the 

tweezer j frequency with that correponding to the atom index i 

assign(Tweezers_phases[j], Phase_list[i]) # update the tweezer phase j 

with that corresponding to the atom index i 

assign(j, j+1)

assign(i, i+1)

# calculate the detunings vector, In this example, tweezer number 0 will go 

to target site 0, tweezer 1 to target site 1 etc.

j2=declare(int) 

with for_(j2, 0 , j2 < Number_of_Tweezers, j2+1): assign(Tweezers_

Detunings[j2], Target_frequencies[j2] - Tweezers_frequencies[j2]) # The 

detuning each tweezer needs to undergo (chirp) is the difference between 

the initial and final frequenciesassign(Min_Detuning, Math.min(Tweezers_

Detunings)) # find the minimum detuning assign(Max_Detuning, Math.

max(Tweezers_Detunings)) # find the maximum detuning # Take the absolute 

value of the detuning and store it into Max_Detuning with if_(-1*Min_Detuning 

> Max_Detuning):

assign(Max_Detuning, -Min_Detuning)

  

# Calculate the pulse length: 

# We calculate the tweezer arrangement pulse length as being the maximum 

detuning that an atom needs to traverse divided by the maximum allowed chirp 

rate 

# In our case Max_Rate is a python constant (=3.2 Hz/ns) which was 

experimentally found to be sufficiently slow so as not to heat up atoms. 

# The resulting pulse length comes out to be Tweezer_Moves_Length=3ms for the 

particular initial and final atom configurations in this example 

assign(Tweezer_Moves_Length, Cast.to_int(Max_Detuning/(1000*Max_Rate))*1000) 

# We multiply and divide by 1000 to avoid integer casting issues since Max_

Rate can in general be non-integer but is usually specified with up to a 

single decimal point as this provides sufficient precision for the use 

  

# Calculate the chirp rates for all Tweezers. 

# Each tweezer has its own chirp rate depending on the initial and final 

position of the arranged atom. All tweezers move at the same time with a 

common chirp pulse length (i.e. they all leave and arrive at the same time). 

with for_(j, 0, j < Number_of_Tweezers, j+1):#N_active

assign(Chirp_Rates[j], Cast.to_int((Tweezers_Detunings[j])/(Tweezer_Moves_
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Length/1000))) # x1000 to go to 'mHz/ns' scaling instead of the default 

'Hz/ns' scaling so as to have a better resolution on the chirp values. 

'uHz/ns' and 'nHz/ns' are also possible

  

# set the phases and frequencies of the Tweezers

update_frequency('Row_selector', Row_Frequency) 

for index in range(Max_Number_of_Tweezers):

frame_rotation(Tweezers_phases[index], 'Column_{}'.format(index + 1)) 

update_frequency('Column_{}'.format(index + 1), Tweezers_

frequencies[index]) 

 

# Now that the calculations are done, we start playing the pulses. 

# All calculations thus far took 11 µs to do in real time on the PPU

# Transfer of the atom location matrix takes less than 5ms for a 100 atom 

array 

  

# align all Tweezers/columns and row selector

align('Row_selector', 'Column_1', 'Column_2', 'Column_3', 'Column_4', 

'Column_5', 'Column_6', 'Column_7', 'Column_8', 'Column_9') 

  

# ramp up power of occupied Tweezers and row selector, we use a Blackman 

pulse to ramp up and down the tweezer's amplitudes

play('Blackman_up_long', 'Row_selector')

for element_index in range(Max_Number_of_Tweezers): 

play('Blackman_up_long'*amp(Amplitude_list[element_index]), 'Column_{}'.

format(element_index+1)) 

  

# chirp Tweezers, each with its own chirp rate but all share the same pulse 

length of Tweezer_Moves_Length/4. The division by 4 is there since we need to 

supply the pulse duration in steps of 4ns since 

# this is the units of the PPU period which is 4ns long (250MHz clock). 

for element_index in range(Max_Number_of_Tweezers):

play('Constant' * amp(Amplitude_list[element_index]), 'Column_{}'.

format(element_index + 1), duration=Tweezer_Moves_Length/4, chirp=(Chirp_

Rates[element_index], 'mHz/nsec'))

  

# ramp down power of occupied Tweezers and row selector, again with a Blackman 

pulse 

#play('Blackman_down_long', 'Row_selector') 

for element_index in range(Max_Number_of_Tweezers):

play('Blackman_down_long'*amp(Amplitude_list[element_index]), 'Column_{}'.

format(element_index+1))

  

# Executing the program

job = qm.execute(order_atoms) 

job.result_handles.wait_for_all_values() 

res = job.result_handles 
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When running this code and acquiring the DAC output going to the column AOD (the row AOD signal is 

trivial, it’s simply a sinusoidal ramping up and down) with a 1GSPS acquisition card we get the following 

waveform (see Figure 6):

Here we can see the 200µs-long Blackman ramp increasing the power adiabatically for all the tones, the 

3ms long chirp pulse, and the 200µs Blackman ramp decreasing the power adiabatically to release the 

atoms into the static trap. The total pulse length is thus 3.4ms long.
Zooming in on the pulse we can see that it is phase-coherent and contains no discontinuities, as seen in 

Figure 7.

ATOM ARRANGEMENT RESULTS

Fig. 6. Acquired waveform of the atom_arrange program (column DAC channel).

Fig. 7. Zoom-in of the 3.4ms long arrangement pulse
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By clicking here you can download the raw 1GSPS, 3.4ms long pulse as acquired by a 1GSPS acquisition card 
(CSV format) and you could then verify for yourself that the pulse was created with no phase jumps or 

dead time in its entirety. The spectrogram of this pulse is in Figure 8.

Fig. 8. Spectrogram of the pulse seen in figure 4

In order to interpret the results of the spectrogram, 

we need to understand that the left-hand side 

represents the initial states of the atoms, while 

the right-hand side represents their final states. 
Moving vertically from the bottom to the top, we 

read the atoms’ initial states:

Atom_location_list = [1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 

0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1]

Which is then moved to their final states

Atom_Target_List=[1, 1, 1, 1, 1, 1, 1, 1, 1]

If, for example, we would want to obtain a different

final state, we can set:
Atom_Target_List=[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 

1, 0, 0, 0]

A setting where we’d want the atoms to form a 

lattice with a 50% filling ratio, the resulting pulse 
will be as seen in Figure 9.
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In the spectrogram (Figure 10), we see that the 

real-time QUA code generated a shorter, 1.4ms-
long pulse for the arrangement of this row of 

atoms since all atoms were at most 2 sites away 

from their target location. Here we see that using 

QUA and the OPX+ we managed to generate 

an adaptive atom arrangement protocol that 

optimizes the pulse length to each particular 

initial/final atom configuration.

This adaptability can be further exploited when 

performing measurements comparing the results 

of running computations on different atom 

array configurations. In such cases, the effective 
distance of the initially detected array to each 

of the possible target states can be evaluated 

in real-time in the PPU and the closest target 

configuration can be then chosen on the fly, thus 
minimizing the preparation time of ensembles of 

target configurations.

As previously mentioned, more elaborate 

arrangement protocols can be devised taking 

advantage of the simplicity and low latency of the 

QUA language and PPU.

Incorporating atom reservoirs in the vicinity of 

the target array to quickly fill in defects, cleaning 
pulses that remove unwanted atoms and 

anything else you could think of can now be easily 

programmed using a high-level programming 

language (QUA) and executed with the low latency 

and speed expected from high-end FPGA systems.

This example demonstrates that anyone with an 

OPX+ can now build atom arrangement protocols 

for hundreds of qubits in a matter of weeks instead 

of the laborious process of developing a custom 

FPGA or PC+DDS solution. For more information 

about how the Quantum Orchestration Platform 

can be used in your lab to speed your experiments, 

please don’t hesitate to contact us, we’d love to 

help you out.

Fig. 9. Acquired waveform of the 1.4ms long arrangement 
pulse (column DAC).

Fig. 10. Spectrogram of the pulse seen in figure 9.
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RUN STATE OF THE ART EXPERIMENTS WITH EASE

OPX+ 

PULSE PROCESSING UNIT
ACHIEVE THE FASTEST TIME TO RESULTS

QUA
CODE QUANTUM PROGRAMS SEAMLESSLY

The Quantum 
Orchestration Platform
AN END TO END QUANTUM CONTROL SOLUTION TO DRIVE 

THE FASTEST TIME TO RESULTS, AT ANY SCALE

An architecture designed from the ground up for quantum 

control, the OPX+ lets you run the quantum experiments of your 

dreams right from the installation. With a quantum feature-

rich environment, the OPX+ is built for scale and performance. 

Now, you can run the most complex quantum algorithms and 

experiments in a fraction of the development time. 

Within the OPX+ is the Pulse Processing Unit, QM’s leading-edge 

quantum control technology. Progress with incomparable speed 

and extreme flexibility. Run even the most demanding experiments 
efficiently, with the fastest runtimes and the lowest latencies in 
the industry, including quantum protocols that require real-time 

waveform generation, real-time waveform acquisition,  

real-time comprehensive processing, and control flow. 

Implement the protocols of your wildest dreams as easily as writing 

pseudocode. Designed for quantum control, QUA is the first universal 
quantum pulse-level programming language. Code even the most 

advanced programs and run them with the best possible performance. 

Natively describe your most challenging experiments, from complex 

AI-based multi-qubit calibrations to multi-qubit quantum error 

correction.

*All of the information above is also valid for the OPX
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Real-Time Waveform
Generation 

•  Fully parametrized: length,  
   frequency, phase (relative &  
   absolute), amplitude,  

   bandwidth, chirp

•  Compensations: Crosstalk  

   matrix, FIR and IIR filters
•  And many more

Real-Time

Processing

Turing complete:
- Basic arithmetics 
- Evaluation of  
   trigonometric functions 
- Vector operations 
- Casting of variable  
   types 
- And more (Turing     
   complete)

Real-Time ‘Quantum’ Estimations 

•  State estimations

•  Error estimations

•  Bayesian estimations

•  Correlation functions

•  Neural nets based estimations

YOUR PROTOCOLS LIVE IN THIS PHASE SPACE

• Easily express quantum algorithms and experimental protocols that comprise all of the above.

• Seamlessly sync measurements, real-time calculations, and pulses of different quantum elements. 

• Loop over a wide range of parameters in real-time, including intermediate frequencies, amplitudes, 

   phases, delays, integration parameters, measurement axes, etc.

• Use if/else and switch-case statements to condition operations in real time (real time feedback).
• Define procedures (macros) to be reused in the code and access an extensive family of libraries.

THE QUANTUM ORCHESTRATION PLATFORM COVERS THIS SPACE!

Fully Parametric

Waveform Generation

Waveform Acquisition

and Manipulation

Real-Time

Processing

Comprehensive

Control Flow

Real-Time Multi-Qubit Feedback

•  Qubit stabilization & tracking

•  Quantum error correction

•  And many more

Real-Time 

Measurements 

•  High fidelity analog to
   digital conversion

•  General integration &
   demodulation

•  Weighted Integrations
   accumulated integrations,
   sliced integrations, etc.

•  Time Tagging, TTL counting

Real-Time 

Control Flow 

•  If/else
•  For loops

•  While loops

•  Switch case
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About Quantum Machines
Quantum Machines (QM) drives quantum breakthroughs that accelerate the 

path towards the new age of quantum computing. The company’s Quantum 

Orchestration Platform (QOP) fundamentally redefines the control and operations 
architecture of quantum processors.

The full-stack hardware and software platform is capable of running even the most 

complex algorithms right out of the box, including quantum error correction, multi-

qubit calibration, and more. Helping achieve the full potential of any quantum 

processor, the QOP allows for unprecedented advancement and speed-up of 

quantum technologies as well as the ability to scale into the thousands of qubits. 

Visit us at: www.quantum-machines.co

*The information contained in this document is confidential and intended solely for its addressees. The information is the property of QM 
Technologies Inc. (“QM”) and may contain legally privileged information. QM may make changes to specifications and product descriptions at 
any time, and this document does not represent a commitment on the part of QM, but is supplied solely for allowing the intended recipients 
hereof to consider a general business engagement with QM. This information is subject to change without notice. © QM Technologies Inc.

If you wish to learn more:
info@quantum-machines.co
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