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USE CASE

Quantum Orchestration for 
Superconducting Qubits

With the Quantum Orchestration Platform, there’s no limit to the 

kind of experiments you can run. Find out how to supercharge your 

superconducting qubits research with these real-world use cases.
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RAMSEY MEASUREMENT

The Ramsey sequence is the most basic direct 

probe of quantum coherence in a two-level 

system. It consists of four steps: An initial Y/2 pulse, 

followed by a free evolution, an additional Y/2 

pulse in the rotating frame of the qubit, and lastly, 

a projective measurement to determine the state 

of the qubit in the |0  , |1   basis. This sequence 

is repeated multiple times, which allows us to 

build up measurement statistics. We repeat it for 

different free-evolution times. 

The Ramsey sequence directly measures quantum 

coherence. During the free evolution time, the 

qubit will precess in the frame rotating with the 

drive frequency at a rate of Δf=fdrive–f01. Due to 

this, it will pick up a phase which depends on both 

the free evolution time and on Δf. If we repeat 

this many times, only a coherent and repeatable 

phase evolution will lead to oscillations in the 

measured state of the qubit. Consequently, the 

amplitude of these oscillations directly reflects
the coherence of the phase acquired during 

free evolution.

We typically use this sequence to determine two 

vital parameters of the qubit: The T2* time, which 

is the low-frequency dephasing noise from the 

environment [1], as well as the qubit transition 

frequency, which can be accurately measured 

since it is the only frequency for which no 

oscillations are visible.

The following QUA program implements this 

Ramsey measurement sequence. It is crucial to 

emphasize that although this code is Python-

embedded, it is an independent programming 

language. A proprietary compiler will compile 

the code written here into a set of machine 

instructions that the pulse processing unit (PPU) 

inside the OPX+ will then execute in real-time and 

with nanosecond-scale latency.

Fig. 1  A schematic description of the connectivity between the OPX+ and the experimental system for the Ramsey 

experiment. A single qubit is characterized, and its state is measured with a readout resonator. The IF signals from the 

OPX+ are upconverted and downcoverted using IQ mixers.
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RAMSEY WITH FREQUENCY TUNING

Fig. 2  The Ramsey interference sequence for measuring T2* and f01 of the qubit. Three nested loops are used, and twait and 

Δf are scanned over. The top part of the figure corresponds to the state of the qubit on the Bloch sphere during the sequence, 
before and after each gate operation. During the free evolution stage, the phase acquired drifts between different iterations, 

reflected as smearing in Y’s sinusoidal variation and in the bloch vector component.

The program consists of 3 nested for loops; a 

schematic can be seen in Fig 2, and the code is 

implemented in QUA on the following page. The 

first external loop is an averaging loop. The second 
loop loops over the frequency, which is updated to 

a new value when we call

 update_frequency('qubit1', f_sweep)  in line 26, 

and the third one loops over the wait time between 

the two pulses. 

We play two Y/2 pulses in each iteration, here 

generated in QUA with the statement   

play ('pi_pulse' * amp(0.5), 'qubit1' ) 

in lines 27 and 29. This statement plays a π- 

pulse as defined in the program configuration, 
and scales its amplitude by half. The program 

configuration, which is not shown here for the 
sake of brevity, is where all the static information, 

including waveform samples, output frequencies 

and state discriminators. is stored. Between the 

pulses, we wait for a time corresponding to the 

QUA variable  free_time . Then, in the  measure 

statement on line 31, we perform the

following sequence. 

Send a drive pulse to the readout resonator, wait 

for a fixed amount of time, acquire the output from 
the readout resonator, demodulate it, and store 

the demodulated result in the QUA variables   

 I   and  Q . We can then either send the results 

back to the PC using the  save  statements in 

lines 34 or 35, or use the IQ values inside the QUA 

program for whatever we choose.

The process is repeated for different qubit 

offset frequencies and wait times. As explained 

above, for a given frequency offset, we observe 

oscillations with a period which corresponds to 

1/Δf , which gives the characteristic lineshapes 

shown in Fig. 3. The visibility of these lineshapes 

decays uniformly as time progresses. The run time 

of this program, including data acquisition, was 

approximately 10 minutes.

A crucial ingredient in the program is the  

  reset_qubit1   method. This method is a 

simple yet illustrative example of an active reset 

sequence that demonstrates how easy it is to 

perform feedback operations on the OPX+. All that 

is needed is to store the result of the measurement 

into a QUA variable, and then use this variable in 

a  while  loop to perform a conditioned π-pulse 

operation!
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QUA code for Ramsey 2D scan This QUA code was used to generate the data seen in Fig. 3.

Fig. 3  The expectation value of   Sz   for different wait times and 

frequency detuning values. The oscillation period is 1/Δf. The 

visibility of the interference oscillations decays with wait time, 

from which the T2* coherence time of the qubit can be inferred. 

This measurement took about 10 minutes with the OPX+.

Fig. 4  Decaying oscillations for real frequency detuning of 

0.251MHz (yellow line), showing asymmetry, and for a virtual Z 

rotation which allows us to accumulate a phase equal to

2 πΔftwait . during the free evolution stage.
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RAMSEY WITH OPTIMAL π/2 PULSES

QUA Code for 1D Ramsey scan This QUA code was used to generate the dataset in Fig. 4. The method reset_qubit1() is defined 
in the QUA code for generating the 2D Ramsey scan above.

2πα to the phase of subsequent pulses. This allows 

it to function as an actual frame rotation or as a 

virtual Z-rotation operation [2]. 

In fig.4 we compare two scenarios: in the first,
we detune the drive frequency by 0.251MHz 

throughout the experiment. In the second, we 

update the frame by 0.251MHz    twait using 

 frame_rotation_2pi . We can see that both lead 

to the same oscillation frequency. However, in the 

second case the oscillations are more symmetric 

and centered around   Sz   = 0 , thus enabling us to 

perform a better fitting procedure for T2* and the 

frequency detuning.

In the previous example, we glossed over an 

important detail: when we played the pulses, the 

frequency detuning was also on, and thus our 

pulses were slightly detuned and contained a 

(small) Z component. This can lead to asymmetric 

oscillations which are not centered around

 Sz  = 0, as the qubit will not process on the 

equatorial plane exactly (see Fig. 4). If we wanted 

to get rid of this Z component, we would have to 

detune the frequency only during the free evolution 

time. We can do this by artificially adding a phase 
during the free evolution stage, proportional to the 

wait time.

In QUA, we can easily do this using the

 frame_rotation_2pi . statement, as seen in the 

example program. This statement is accumulative, 

which means that calling it with a value α will add  
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QUANTUM ERROR-CORRECTION 
AND REAL-TIME FEEDBACK

Quantum Error-Correction is a great example 

demonstrating the integration of many of the 

benefits of the Quantum Orchestration Platform 
(QOP) and the OPX+. Here we show an example of 

how you can easily implement a 3-qubit bit-flip 
code on a superconducting qubit device 

with the QOP.

Figure 1 shows the experimental setup. Five 

transmon qubits are controlled using microwave 

signals which are IQ modulated by ten analog 

output channels of the two OPXs+, for XY control. 

Flux bias signals are generated directly by five 
additional analog output channels of the OPXs+, 

for Z control. 

Each qubit is coupled to a readout resonator 

and all five resonators are coupled to the same 
transmission line. The transmission line is probed 

using another microwave signal that is IQ 

modulated by two analog output channels of an 

OPX+ and measured after downconversion by the 

OPX+ analog input channel.

Fig. 1  A setup for interfacing five transmons. Two OPXs+ are set up to control the MW and flux tuning lines of five transmons. 
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Figure 2 shows the 3-qubit bit-flip code circuit. A 
logical qubit state |ψ   = α|0   + β|1   is encoded 

using three physical qubits in the state

α|000   + β|111  . If the first qubit is prepared in 
the original state |ψ  , then this can be done by 

performing two CNOT gates as shown. In the 

Encoding stage of the circuit in the figure

The idea of the 3-qubit bit-flip code is that a single 
bit flip in the encoded state can be detected by 
measuring and tracking the parity of two pairs of 

qubits (Repeat Error Tracking stage of the circuit in 

Fig.2). This can be N times track the bit-flips during 
some time, after which a correction is applied to 

the three qubits according to the error tracking 

results (Correction stage in Figure 2). Finally, the 

state is decoded back to the state of a single 

physical qubit L.

The parity measurements can be done by 

employing two more ancilla qubits initialized in

the  |0   state before every measurement 

sequence, as shown in Fig.2 To measure the parity 

of a pair of qubits, say qubit 1 and 2, one CNOT 

gate is applied to qubit 1 and the ancilla qubit, and 

one CNOT gate is applied to qubit 2 and the same 

ancilla. This entangles the parity of the two qubits 

with the state of the ancilla, which can then be 

measured to determine the parity.

Fig. 2  N = amount of repeated measurements. Circuit for a 3-qubit error correction code. Two ancilla qubits are used to 

enable both error detection and correction. L is the logical qubit, expressed in the extended Hilbert space. The error tracking 

process is repeated N times.

From the control perspective, running such a 

protocol is very demanding since it requires:

Fast real-time processing: to manage the error 

tracking in every iteration of the Repeated

Error Tracking stage. Faster than the desired 

duration of the iteration, which is typically 100s 

of ns in superconducting circuits [3].

Control flow: to enable Error Tracking repetition 

for as many times as one requires

Low-latency feedback: to correct the error based 

on the error tracking results
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xN

}
}

L

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=


WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

QUA Code for implementing the 3-qubit bit-flip code.

“Having tried several instruments in the past, I’m very 

impressed by Quantum Machines’ OPX. It finally removes the 
need for us to develop any skills in FPGA programming while 

still benefiting from advanced FPGA capabilities in 
our experiments.”

Prof. Benjamin Huard, ENS de Lyon
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After we initialize the qubits we apply a π/2 pulse 

to the first data qubit in order to prepare the qubit 
in an initial state. Then, we entangle the data qubit 

with the two ancillary qubits. 

The error tracking phase inside a for-loop 

repeats blocks of CNOT gates followed by a 

measurement of the output resonators, from 

which an error syndrome can be extracted. If an 

error is detected, one of the three conditional 

statements can apply to the appropriate recovery 

gate. The actual waveforms required to perform 

the CNOT gate vary between quantum computer 

implementations, and the specific CNOT method 
can be implemented straightforwardly using the 

same constructs we’ve seen so far.

"I must say I’m very happy with QM’s Quantum Orchestration 

Platform. It’s the single most reliable piece of equipment 

I’ve got in the lab. I operate it remotely and never had any 

problems. I strongly recommend the OPX and the QOP to my 

colleagues. It is by far the simplest way to go qubit physics."

Dr. Emmanuel Flurin, CEA Saclay, Quantronics Group
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RUN STATE OF THE ART EXPERIMENTS WITH EASE

OPX+ 

PULSE PROCESSING UNIT
ACHIEVE THE FASTEST TIME TO RESULTS

QUA
CODE QUANTUM PROGRAMS SEAMLESSLY

The Quantum 
Orchestration Platform
AN END TO END QUANTUM CONTROL SOLUTION TO DRIVE 

THE FASTEST TIME TO RESULTS, AT ANY SCALE

An architecture designed from the ground up for quantum 

control, the OPX+ lets you run the quantum experiments of your 

dreams right from the installation. With a quantum feature-

rich environment, the OPX+ is built for scale and performance. 

Now, you can run the most complex quantum algorithms and 

experiments in a fraction of the development time. 

Within the OPX+ is the Pulse Processing Unit, QM’s leading-edge 

quantum control technology. Progress with incomparable speed 

and extreme flexibility. Run even the most demanding experiments 
efficiently, with the fastest runtimes and the lowest latencies in 
the industry, including quantum protocols that require real-time 

waveform generation, real-time waveform acquisition,  

real-time comprehensive processing, and control flow. 

Implement the protocols of your wildest dreams as easily as writing 
pseudocode. Designed for quantum control, QUA is the first universal 
quantum pulse-level programming language. Code even the most 

advanced programs and run them with the best possible performance. 

Natively describe your most challenging experiments, from complex 

AI-based multi-qubit calibrations to multi-qubit quantum error 

correction.

*All of the information above is also valid for the OPX
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Real-Time Waveform
Generation 

•  Fully parametrized: length,  
   frequency, phase (relative &  
   absolute), amplitude,  

   bandwidth, chirp

•  Compensations: Crosstalk  

   matrix, FIR and IIR filters
•  And many more

Real-Time

Processing

Turing complete:
- Basic arithmetics 
- Evaluation of  
   trigonometric functions 
- Vector operations 
- Casting of variable  
   types 
- And more (Turing     
   complete)

Real-Time ‘Quantum’ Estimations 

•  State estimations

•  Error estimations

•  Bayesian estimations

•  Correlation functions

•  Neural nets based estimations

YOUR PROTOCOLS LIVE IN THIS PHASE SPACE

• Easily express quantum algorithms and experimental protocols that comprise all of the above.

• Seamlessly sync measurements, real-time calculations, and pulses of different quantum elements. 

• Loop over a wide range of parameters in real-time, including intermediate frequencies, amplitudes, 

   phases, delays, integration parameters, measurement axes, etc.

• Use if/else and switch-case statements to condition operations in real time (real time feedback).

• Define procedures (macros) to be reused in the code and access an extensive family of libraries.

THE QUANTUM ORCHESTRATION PLATFORM COVERS THIS SPACE!

Fully Parametric

Waveform Generation

Waveform Acquisition

and Manipulation

Real-Time

Processing

Comprehensive

Control Flow

Real-Time Multi-Qubit Feedback
•  Qubit stabilization & tracking

•  Quantum error correction

•  And many more

Real-Time 

Measurements 

•  High fidelity analog to
   digital conversion

•  General integration &
   demodulation

•  Weighted Integrations
   accumulated integrations,
   sliced integrations, etc.

•  Time Tagging, TTL counting

Real-Time 

Control Flow 
•  If/else

•  For loops

•  While loops

•  Switch case
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About Quantum Machines
Quantum Machines (QM) drives quantum breakthroughs that accelerate the 

path towards the new age of quantum computing. The company’s Quantum 

Orchestration Platform (QOP) fundamentally redefines the control and operations 
architecture of quantum processors.

The full-stack hardware and software platform is capable of running even the most 

complex algorithms right out of the box, including quantum error correction, multi-

qubit calibration, and more. Helping achieve the full potential of any quantum 

processor, the QOP allows for unprecedented advancement and speed-up of 

quantum technologies as well as the ability to scale into the thousands of qubits. 

Visit us at: www.quantum-machines.co

*The information contained in this document is confidential and intended solely for its addressees. The information is the property of QM 
Technologies Inc. (“QM”) and may contain legally privileged information. QM may make changes to specifications and product descriptions at 
any time, and this document does not represent a commitment on the part of QM, but is supplied solely for allowing the intended recipients 

hereof to consider a general business engagement with QM. This information is subject to change without notice. © QM Technologies Inc.

If you wish to learn more:
info@quantum-machines.co
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