
WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

USE CASE

Quantum Orchestration for
Superconducting Qubits

With the Quantum Orchestration Platform, there’s no limit to the

kind of experiments you can run. Find out how to supercharge your

superconducting qubits research with these real-world use cases.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

RAMSEY MEASUREMENT

The Ramsey sequence is the most basic direct

probe of quantum coherence in a two-level

system. It consists of four steps: An initial Y/2 pulse,

followed by a free evolution, an additional Y/2

pulse in the rotating frame of the qubit, and lastly,

a projective measurement to determine the state

of the qubit in the |0 , |1 basis. This sequence

is repeated multiple times, which allows us to

build up measurement statistics. We repeat it for

different free-evolution times.

The Ramsey sequence directly measures quantum

coherence. During the free evolution time, the

qubit will precess in the frame rotating with the

drive frequency at a rate of Δf=fdrive–f01. Due to

this, it will pick up a phase which depends on both

the free evolution time and on Δf. If we repeat

this many times, only a coherent and repeatable

phase evolution will lead to oscillations in the

measured state of the qubit. Consequently, the

amplitude of these oscillations directly reflects
the coherence of the phase acquired during

free evolution.

We typically use this sequence to determine two

vital parameters of the qubit: The T2* time, which

is the low-frequency dephasing noise from the

environment [1], as well as the qubit transition

frequency, which can be accurately measured

since it is the only frequency for which no

oscillations are visible.

The following QUA program implements this

Ramsey measurement sequence. It is crucial to

emphasize that although this code is Python-

embedded, it is an independent programming

language. A proprietary compiler will compile

the code written here into a set of machine

instructions that the pulse processing unit (PPU)

inside the OPX+ will then execute in real-time and

with nanosecond-scale latency.

Fig. 1 A schematic description of the connectivity between the OPX+ and the experimental system for the Ramsey

experiment. A single qubit is characterized, and its state is measured with a readout resonator. The IF signals from the

OPX+ are upconverted and downcoverted using IQ mixers.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

RAMSEY WITH FREQUENCY TUNING

Fig. 2 The Ramsey interference sequence for measuring T2* and f01 of the qubit. Three nested loops are used, and twait and

Δf are scanned over. The top part of the figure corresponds to the state of the qubit on the Bloch sphere during the sequence,
before and after each gate operation. During the free evolution stage, the phase acquired drifts between different iterations,

reflected as smearing in Y’s sinusoidal variation and in the bloch vector component.

The program consists of 3 nested for loops; a

schematic can be seen in Fig 2, and the code is

implemented in QUA on the following page. The

first external loop is an averaging loop. The second
loop loops over the frequency, which is updated to

a new value when we call

 update_frequency('qubit1', f_sweep) in line 26,

and the third one loops over the wait time between

the two pulses.

We play two Y/2 pulses in each iteration, here

generated in QUA with the statement

play ('pi_pulse' * amp(0.5), 'qubit1')

in lines 27 and 29. This statement plays a π-

pulse as defined in the program configuration,
and scales its amplitude by half. The program

configuration, which is not shown here for the
sake of brevity, is where all the static information,

including waveform samples, output frequencies

and state discriminators. is stored. Between the

pulses, we wait for a time corresponding to the

QUA variable free_time . Then, in the measure

statement on line 31, we perform the

following sequence.

Send a drive pulse to the readout resonator, wait

for a fixed amount of time, acquire the output from
the readout resonator, demodulate it, and store

the demodulated result in the QUA variables

 I and Q . We can then either send the results

back to the PC using the save statements in

lines 34 or 35, or use the IQ values inside the QUA

program for whatever we choose.

The process is repeated for different qubit

offset frequencies and wait times. As explained

above, for a given frequency offset, we observe

oscillations with a period which corresponds to

1/Δf , which gives the characteristic lineshapes

shown in Fig. 3. The visibility of these lineshapes

decays uniformly as time progresses. The run time

of this program, including data acquisition, was

approximately 10 minutes.

A crucial ingredient in the program is the

 reset_qubit1 method. This method is a

simple yet illustrative example of an active reset

sequence that demonstrates how easy it is to

perform feedback operations on the OPX+. All that

is needed is to store the result of the measurement

into a QUA variable, and then use this variable in

a while loop to perform a conditioned π-pulse

operation!

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

QUA code for Ramsey 2D scan This QUA code was used to generate the data seen in Fig. 3.

Fig. 3 The expectation value of Sz for different wait times and

frequency detuning values. The oscillation period is 1/Δf. The

visibility of the interference oscillations decays with wait time,

from which the T2* coherence time of the qubit can be inferred.

This measurement took about 10 minutes with the OPX+.

Fig. 4 Decaying oscillations for real frequency detuning of

0.251MHz (yellow line), showing asymmetry, and for a virtual Z

rotation which allows us to accumulate a phase equal to

2 πΔftwait . during the free evolution stage.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

RAMSEY WITH OPTIMAL π/2 PULSES

QUA Code for 1D Ramsey scan This QUA code was used to generate the dataset in Fig. 4. The method reset_qubit1() is defined
in the QUA code for generating the 2D Ramsey scan above.

2πα to the phase of subsequent pulses. This allows

it to function as an actual frame rotation or as a

virtual Z-rotation operation [2].

In fig.4 we compare two scenarios: in the first,
we detune the drive frequency by 0.251MHz

throughout the experiment. In the second, we

update the frame by 0.251MHz twait using

 frame_rotation_2pi . We can see that both lead

to the same oscillation frequency. However, in the

second case the oscillations are more symmetric

and centered around Sz = 0 , thus enabling us to

perform a better fitting procedure for T2* and the

frequency detuning.

In the previous example, we glossed over an

important detail: when we played the pulses, the

frequency detuning was also on, and thus our

pulses were slightly detuned and contained a

(small) Z component. This can lead to asymmetric

oscillations which are not centered around

 Sz = 0, as the qubit will not process on the

equatorial plane exactly (see Fig. 4). If we wanted

to get rid of this Z component, we would have to

detune the frequency only during the free evolution

time. We can do this by artificially adding a phase
during the free evolution stage, proportional to the

wait time.

In QUA, we can easily do this using the

 frame_rotation_2pi . statement, as seen in the

example program. This statement is accumulative,

which means that calling it with a value α will add

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

QUANTUM ERROR-CORRECTION
AND REAL-TIME FEEDBACK

Quantum Error-Correction is a great example

demonstrating the integration of many of the

benefits of the Quantum Orchestration Platform
(QOP) and the OPX+. Here we show an example of

how you can easily implement a 3-qubit bit-flip
code on a superconducting qubit device

with the QOP.

Figure 1 shows the experimental setup. Five

transmon qubits are controlled using microwave

signals which are IQ modulated by ten analog

output channels of the two OPXs+, for XY control.

Flux bias signals are generated directly by five
additional analog output channels of the OPXs+,

for Z control.

Each qubit is coupled to a readout resonator

and all five resonators are coupled to the same
transmission line. The transmission line is probed

using another microwave signal that is IQ

modulated by two analog output channels of an

OPX+ and measured after downconversion by the

OPX+ analog input channel.

Fig. 1 A setup for interfacing five transmons. Two OPXs+ are set up to control the MW and flux tuning lines of five transmons.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Figure 2 shows the 3-qubit bit-flip code circuit. A
logical qubit state |ψ = α|0 + β|1 is encoded

using three physical qubits in the state

α|000 + β|111 . If the first qubit is prepared in
the original state |ψ , then this can be done by

performing two CNOT gates as shown. In the

Encoding stage of the circuit in the figure

The idea of the 3-qubit bit-flip code is that a single
bit flip in the encoded state can be detected by
measuring and tracking the parity of two pairs of

qubits (Repeat Error Tracking stage of the circuit in

Fig.2). This can be N times track the bit-flips during
some time, after which a correction is applied to

the three qubits according to the error tracking

results (Correction stage in Figure 2). Finally, the

state is decoded back to the state of a single

physical qubit L.

The parity measurements can be done by

employing two more ancilla qubits initialized in

the |0 state before every measurement

sequence, as shown in Fig.2 To measure the parity

of a pair of qubits, say qubit 1 and 2, one CNOT

gate is applied to qubit 1 and the ancilla qubit, and

one CNOT gate is applied to qubit 2 and the same

ancilla. This entangles the parity of the two qubits

with the state of the ancilla, which can then be

measured to determine the parity.

Fig. 2 N = amount of repeated measurements. Circuit for a 3-qubit error correction code. Two ancilla qubits are used to

enable both error detection and correction. L is the logical qubit, expressed in the extended Hilbert space. The error tracking

process is repeated N times.

From the control perspective, running such a

protocol is very demanding since it requires:

Fast real-time processing: to manage the error

tracking in every iteration of the Repeated

Error Tracking stage. Faster than the desired

duration of the iteration, which is typically 100s

of ns in superconducting circuits [3].

Control flow: to enable Error Tracking repetition

for as many times as one requires

Low-latency feedback: to correct the error based

on the error tracking results

AN CI LL AS

xN

}
}

L

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

QUA Code for implementing the 3-qubit bit-flip code.

“Having tried several instruments in the past, I’m very

impressed by Quantum Machines’ OPX. It finally removes the
need for us to develop any skills in FPGA programming while

still benefiting from advanced FPGA capabilities in
our experiments.”

Prof. Benjamin Huard, ENS de Lyon

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

After we initialize the qubits we apply a π/2 pulse

to the first data qubit in order to prepare the qubit
in an initial state. Then, we entangle the data qubit

with the two ancillary qubits.

The error tracking phase inside a for-loop

repeats blocks of CNOT gates followed by a

measurement of the output resonators, from

which an error syndrome can be extracted. If an

error is detected, one of the three conditional

statements can apply to the appropriate recovery

gate. The actual waveforms required to perform

the CNOT gate vary between quantum computer

implementations, and the specific CNOT method
can be implemented straightforwardly using the

same constructs we’ve seen so far.

"I must say I’m very happy with QM’s Quantum Orchestration

Platform. It’s the single most reliable piece of equipment

I’ve got in the lab. I operate it remotely and never had any

problems. I strongly recommend the OPX and the QOP to my

colleagues. It is by far the simplest way to go qubit physics."

Dr. Emmanuel Flurin, CEA Saclay, Quantronics Group

References

To implement the 3-qubit bit-flip code in QUA,
first, classical variables are initialized. We store
measurements of the three data qubits in a

boolean vector qb_states , measurements of the

two ancilla states in the boolean vector an_states

, and the parity of the number of flips on each

data qubit in the boolean vector flips.

Then, the preparation stage of the circuit is

defined. Here we first reset the five qubits using the
function reset_qubits(elements) . For specific
implementation of an active reset function of a

single qubit, which uses real-time feedback and

resets the qubits quickly and efficiently with QUA,
please refer to the Ramsey example above. Here

we focus on the error correction code.

[1] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A quantum engineer’s guide

 to superconducting qubits,” Appl. Phys. Rev., vol. 6, no. 2, p. 021318, Jun. 2019.

[2] D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta, “Efficient Z gates for quantum

computing,” Phys. Rev. A, vol. 96, no. 2, p. 022330, Aug. 2017.

[3] M. D. Reed et al., “Realization of three-qubit quantum error correction with superconducting circuits,”

Nature, vol. 482, no. 7385, pp. 382–385, Feb. 2012.Nat. Commun., vol. 5, no. 1, pp. 1–6, Oct. 2014.

[4] S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for beginners,” Reports Prog. Phys., vol. 76,

no. 7, pp. 76001–76036, Jul. 2013.

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
https://aip.scitation.org/doi/10.1063/1.5089550
https://aip.scitation.org/doi/10.1063/1.5089550
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.022330
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.022330
https://www.nature.com/articles/nature10786?page=2
https://iopscience.iop.org/article/10.1088/0034-4885/76/7/076001/meta

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

RUN STATE OF THE ART EXPERIMENTS WITH EASE

OPX+

PULSE PROCESSING UNIT
ACHIEVE THE FASTEST TIME TO RESULTS

QUA
CODE QUANTUM PROGRAMS SEAMLESSLY

The Quantum
Orchestration Platform
AN END TO END QUANTUM CONTROL SOLUTION TO DRIVE

THE FASTEST TIME TO RESULTS, AT ANY SCALE

An architecture designed from the ground up for quantum

control, the OPX+ lets you run the quantum experiments of your

dreams right from the installation. With a quantum feature-

rich environment, the OPX+ is built for scale and performance.

Now, you can run the most complex quantum algorithms and

experiments in a fraction of the development time.

Within the OPX+ is the Pulse Processing Unit, QM’s leading-edge

quantum control technology. Progress with incomparable speed

and extreme flexibility. Run even the most demanding experiments
efficiently, with the fastest runtimes and the lowest latencies in
the industry, including quantum protocols that require real-time

waveform generation, real-time waveform acquisition,

real-time comprehensive processing, and control flow.

Implement the protocols of your wildest dreams as easily as writing
pseudocode. Designed for quantum control, QUA is the first universal
quantum pulse-level programming language. Code even the most

advanced programs and run them with the best possible performance.

Natively describe your most challenging experiments, from complex

AI-based multi-qubit calibrations to multi-qubit quantum error

correction.

*All of the information above is also valid for the OPX

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Real-Time Waveform
Generation

• Fully parametrized: length,
 frequency, phase (relative &
 absolute), amplitude,

 bandwidth, chirp

• Compensations: Crosstalk

 matrix, FIR and IIR filters
• And many more

Real-Time

Processing

Turing complete:
- Basic arithmetics
- Evaluation of
 trigonometric functions
- Vector operations
- Casting of variable
 types
- And more (Turing
 complete)

Real-Time ‘Quantum’ Estimations

• State estimations

• Error estimations

• Bayesian estimations

• Correlation functions

• Neural nets based estimations

YOUR PROTOCOLS LIVE IN THIS PHASE SPACE

• Easily express quantum algorithms and experimental protocols that comprise all of the above.

• Seamlessly sync measurements, real-time calculations, and pulses of different quantum elements.

• Loop over a wide range of parameters in real-time, including intermediate frequencies, amplitudes,

 phases, delays, integration parameters, measurement axes, etc.

• Use if/else and switch-case statements to condition operations in real time (real time feedback).

• Define procedures (macros) to be reused in the code and access an extensive family of libraries.

THE QUANTUM ORCHESTRATION PLATFORM COVERS THIS SPACE!

Fully Parametric

Waveform Generation

Waveform Acquisition

and Manipulation

Real-Time

Processing

Comprehensive

Control Flow

Real-Time Multi-Qubit Feedback
• Qubit stabilization & tracking

• Quantum error correction

• And many more

Real-Time

Measurements

• High fidelity analog to
 digital conversion

• General integration &
 demodulation

• Weighted Integrations
 accumulated integrations,
 sliced integrations, etc.

• Time Tagging, TTL counting

Real-Time

Control Flow
• If/else

• For loops

• While loops

• Switch case

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

WWW.QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

About Quantum Machines
Quantum Machines (QM) drives quantum breakthroughs that accelerate the

path towards the new age of quantum computing. The company’s Quantum

Orchestration Platform (QOP) fundamentally redefines the control and operations
architecture of quantum processors.

The full-stack hardware and software platform is capable of running even the most

complex algorithms right out of the box, including quantum error correction, multi-

qubit calibration, and more. Helping achieve the full potential of any quantum

processor, the QOP allows for unprecedented advancement and speed-up of

quantum technologies as well as the ability to scale into the thousands of qubits.

Visit us at: www.quantum-machines.co

*The information contained in this document is confidential and intended solely for its addressees. The information is the property of QM
Technologies Inc. (“QM”) and may contain legally privileged information. QM may make changes to specifications and product descriptions at
any time, and this document does not represent a commitment on the part of QM, but is supplied solely for allowing the intended recipients

hereof to consider a general business engagement with QM. This information is subject to change without notice. © QM Technologies Inc.

If you wish to learn more:
info@quantum-machines.co

http://WWW.QUANTUM-MACHINES.CO
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
http://www.quantum-machines.co
mailto:info%40quantum-machines.co?subject=

