
QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

QUA
Quantum pulse-level programming
language: implement the protocols
of your wildest dreams, as easily as
writing pseudocode

Accelerate your quantum research and
development to unrivaled speeds

Bring out the best of your qubits

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Code 1,000 Qubits as Easy as One
 Quantum Complete

play(‘pi_pulse’, ‘qubit1_xy’)

measure(‘readout_pulse’, ‘qubit12’, raw_data, demod.full(‘cos’, result))

Native quantum pulse-level
operations

Turing Complete

assign(a, Math.cos(x) * Math.sqrt(y)) # a = cos(x)*sqrt(y)

assign(b, Math.abs(z) + Math.ln(w)) # b = abs(z)*ln(w)

Comprehensive classical
processing of classical variables

while(...), for(...), if/else(...), switch-case # nest them !!Comprehensive control flow

Quantum Classical

play(‘pi_pulse’*amp(a), ‘q1_xy’, duration=b, # a from line 2

 chirp=(Math.cos(a) * Math.exp(b), ’Hz/nsec’)) # b from line 3

measure(‘readout_pulse’, ‘QPC’, # signal integration

 integration.full(‘weights’, result))

measure(‘trigger’, ‘laser’, # time-tagging

 time_tagging.analog(timestamps, length, counts))

Quantum operations based on
classical variables and calculations

assign(state_estimation,

 0.5 * (1 + result * (alpha+beta*C))) # result from lines 7-8

assign(error_syndrome,

 ancilla_result[0] & ~ancilla_result[1]) # vector of errors

Classical calculations based on
quantum measurements

if_(error_estimation):

 play(‘pi’*amp(Math.ArgMax(all_states)), ‘q1_xy’) # analog feedback

while_(error_syndrome == 0):

 do_something() # user-defined QUA macro

Control flow based on classical
variables based on quantum
measurements

Comprehensive Timing Control

Absolute timing control (relative to global time-stamp) and relative timing control (sync and async
multi-threading)

Pseudocode vs QUA Code - STOP Algorithm (AWS)

 while_(test == False):

 if_(n_diff == t):

 assign(test, 1)

 assign_vec(synPrevRound, synCurrRound) # vector processing

 measure_ZL_syndrome(logical_qubit, synCurrRound) # QUA macro

 if_(countSyn > 1):

 if_(synCurrRound == synPrevRound):

 assign(SynRep, SynRep + 1)

 assign(n_diffInc, 0)

 else_():

 assign(SynRep, 0)

 if_(n_diffInc == 0):

 assign(n_diff, n_diff + 1)

 assign(n_diffInc, 1)

 else_():

 assign(n_diffInc, 0)

 if_(SynRep == t - n_diff + 1):

 assign(test, 1)

 assign(countSyn, countSyn + 1)

initialize: t=(d-1)/2;ndiff=0;countSyn=1;

 SynRep=1;ndiff Increase=0;

while test= 0 do

 if ndiff=t then

 test=1

 end

Measure the error syndrome sj.

Store the error syndrome sj-1

from the previous round in

synPreviousRound and the

current syndrome sj in

synCurrentRound.;

if countSyn>1then

if synPreviousRound=synCurrentRound

then

SynRep=SynRep+1;

ndiffIncrease=0;

else

SynRep=0;

if ndiffIncrease=0 then

ndiff=ndiff+1;

ndiffIncrease=1;

else

ndiffIncrease=0;

end

end

end

if SynRep=t-ndiff+1 then

test=1;

end

countSyn=countSyn+1;

end

* arXiv:2012.04108

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

QUA is a first-of-its-kind pulse-level programming language that integrates classical processing
into the lowest levels of quantum programming in an unprecedented way. It unifies universal
quantum operations in their ‘raw’ format – all the pulse-level stuff used to control and measure
qubits – with universal classical operations used in classical processing – all the good stuff you
know from Python, Matlab, Java, etc.

Run Your Quantum Experiments with Ease

• Randomized and cross-entropy benchmarking
• Multi-qubit active reset
• Quantum error correction (e.g. cat codes, surface code)
• From Rabi, Ramsey and spectroscopy to neural-net-

based calibrations

• Qubit state tracking and qubit stabilization
• Real-time atom sorting
• Bayesian estimation-based adaptive sensing
• Multi-node entanglement distillation
• [Your Next Dream Protocol Here!]

QUA unifies universal quantum
operations in their ‘raw’ format,
at the pulse level, with universal
classical operations used in
classical processing (Turing
complete) and comprehensive
control flow.

Code the most advanced
programs and run them on
hardware with best possible
performance.
Natively describe your most
challenging experiments, from
complex AI-based multi-qubit
calibrations to quantum error
correction.

QUA scales with you to enhance
your quantum algorithms
and experiments - today and
tomorrow. With QUA, coding 1,000
qubits is as easy as coding one
qubit. QUA removes limitations
in implementing protocols,
from the simplest to the most
complex.

Comprehensive
Quantum and Classical

Expressive
As Advanced as It Gets

Scalable
Grows with You

Quantum
Sensing

Quantum Technologies
Research & Development

Quantum
Communication

Quantum
Firmware Development

Quantum
Simulations

Hybrid Quantum -

Classical Algorithmics
Quantum

Computing

Key Benefits

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

About Quantum Machines

If you wish to learn more:

Read and watch short
demos in our blog

Quantum Machines (QM) accelerates the realization of practical quantum computing that will
disrupt all industries. Our comprehensive portfolio includes state-of-the-art control systems and
cryogenic electronic solutions that support multiple quantum processing unit technologies. QM’s
OPX family of quantum controllers leverages unique Pulse Processing Unit (PPU) technology to deliver
unprecedented performance, scalability, and productivity.

Easily programmable at the pulse-level or gate-level (OpenQASM3), OPX runs even the most
complex quantum algorithms right out of the box – including quantum error correction, multi-qubit
calibration, mid-circuit frequency tracking, and more. With hundreds of deployments, Quantum
Machines’ products and solutions have been widely adopted by national and academic research
labs, HPC centers, quantum computer manufacturers, and cloud service providers. For more
information, please visit quantum-machines.co.

The information contained in this document is the property of Q.M. Technologies Ltd. (“Quantum Machines”) and QDevil Inc. | Document version 3.2

info@quantum-machines.co

quantum-machines.co/blog

Quantum Control Systems

OPX+

Octave

QDAC-II

• Advanced signal generation

• Ultra-low noise, high stability

• High bandwidth, many
channels

QBox

• Breakout box for DC wiring

• Auto-calibrated IQ mixing and
local oscillator system

• Up/down conversion signals

• Extends the OPX+ range to
18 GHz

• All-in-one quantum controller

• Real-time processing and
ultra-fast analog feedback

• Diversified qubit technologies

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
http://quantum-machines.co/blog
https://www.facebook.com/quantummachines
https://github.com/qua-platform/qua-libs
https://www.linkedin.com/company/quantumachines/mycompany/
https://twitter.com/QuantumQM
https://www.youtube.com/channel/UCuA0JKQhdMah5uqvLnIRX9g

