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TUTORIAL

Dungeons & Qubits:
Ramsey and Frequency
Tracking

Dive into the lab dungeon with us to fight two everyday problems: 
measuring the qubit dephasing time and estimating resonance 
frequency drifts.
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In the last blog post, we 
discussed how the Hadamard 

Pulse Processing Unit (PPU) 

enables real-time craziness and 
provides the four stable pillars 
of quantum control (parametric 

waveform generation & manipulation, and 
processing & control flow) in qubit timescales. 

Today, I would like to show you just how powerful 

Here we face the challenge of quantifying the 
qubit dephasing time T2* to get an idea of how 
long we have to run operations before quantum 
information is lost. To measure this quantity, labs 
everywhere use Ramsey sequences (see Fig.1). The 
protocol consists of playing a 𝝅/2 pulse, followed 
by a waiting time, or interpulse delay 𝛕, and then 

Our OBJECTIVES are to optimize this widely-used procedure, to move on to more fun stuff:

Make It Simple

We need to make it easier to implement and use a Ramsey protocol inside other sequences. 
Basic protocols must become no-brainers to get to crazier stuff. 

Speed It Up

The protocol must run faster. We don’t want to wait hours for a graph, and we have a limited 
time to perform sequences, so every nanosecond matters.

Make It Flexible & Real-Time

The next dungeons in our quantum future require flexibility and real-time feedback. We must be 
able to measure and redefine the next pulse in much less than the T2*.

real-time control and feedback really are. 
We will dive into the lab dungeon to fight two 
everyday problems that nest there. In order of 
difficulty, measuring the qubit dephasing time 
and estimating resonance frequency drifts. 
Together you and I are going to combat them 
using the Quantum Orchestration Platform, its OPX, 
and the PPU at its core, by tapping into Ramsey 
measurement and qubit-frequency tracking 
protocols.

Level 1: Ramsey Measurement

another 𝝅/2  pulse. Then, we measure the qubit to 
monitor its state. The rotations on the Bloch sphere 
are arranged in a way that changes the qubit state 
from |0> to |1> and back. This way, we can measure 
the timescale of the dephasing, which makes the 
system deviate from this pattern.

20

Fig. 1. Schematics of one cycle of a Ramsey sequence, made by a 𝝅/2 pulse, a waiting time, another 𝝅/2 pulse, and finally a 
readout measurement of the state of the qubit.
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Ramsey Sequence in QUA

We do it with little more than pseudocode: just play 
a pulse, wait, play a pulse, measure (check out our 
SSRO macro!). The 𝝅/2 pulses are just a few-data-
points waveforms drawn from a configuration file, 
with pre-calibrated parameters.

With pulse-level logical commands such as 
 wait() , we avoid the whole “send many zeros 

to the AWG” thing. As a matter of fact, you won’t 
need an AWG at all, so there’s that. To loading 
and compilation times we say: no more! The PPU 
understands the language we use to sketch ideas 
on the whiteboard. If we go further down this route, 
we won’t even find idle time to grab a coffee. Times 
really are a-changing, aren’t they?

In our basic Ramsey block, we use a  wait()  

command to ensure the qubit is in its ground state. 

Let’s get to the action. In QUA, our programming 
language dedicated to quantum control, a Ramsey 

sequence (as any other) can be comfortably 
placed in a macro, e.g. within Python:

Of course, if we have a way to reset it actively, this 
becomes unnecessary. The way you explain active 
reset to a fellow physicist is a  play()  command 
sending a  "pi"  pulse to our qubit, conditionally 
on its state. A one-liner in QUA, which runs in less 
than 200ns.

The  align()  command tells the PPU to time-
synchronize elements, so one will wait for the other. 
If you’ve ever dealt with programming repeat-
until-success protocols and time-synchronized 
stuff on FPGAs, you know this is a game-changer: 
the difference between months of development 
vs. hours or minutes. Unless specified via an 

 align() , every command on different qubits 
runs concurrently and independently on distinct 
PPU threads. Two separate setups can run two 
different experiments simultaneously, with one box.

def ramsey(tau, qubit, resonator, state):    # sometimes we need a resonator, sometimes not

    wait(100, qubit)                         # PPU waits, no need to send zeros to memory

    play("pi_half", qubit)                   # Apply precalibrated pi/2 pulses with delay tau

    wait(tau, qubit)

    play("pi_half", qubit)

    align(qubit, resonator)                  # SSRO must happen after qubit oper.

    state = SSRO(resonator, state)           # Measure the qubit, return 1 or 0.

    play("pi", qubit, condition=(state==1))  # Perform active reset -

             # only play pulse if qubit is in excited state

    return state
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We repeat the Ramsey macro for different values 
of the interpulse delay 𝛕  for a 1-dimensional 
Ramsey and detuning for a 2-dimensional Ramsey 

Loops and other control flow statements are also 
understood by the PPU and run in real-time on 
the FPGA (real-time logic rather than compiled 
unwrapped code). Real-time variables are 

So we implemented 1D and 2D Ramsey macros 
with just a few lines of code: Simple.

Real-time logic makes the system simpler and 

(see the result in Fig.2). Let’s also wrap this in a 
macro; after all, why not?

updated and used for calculations or dynamically 
compared to thresholds while you write everything 
just as you would expect. update_frequency()  

updates the frequency applied to the qubit, duh.

runs with the lowest possible latencies: Faster.

Every variable can be a real-time variable living on 
FPGA: Flexible and Real-Time.

def two_d_ramsey(qubit, resonator, frq_range, frq_step, tau_range, tau_step, map):

    with for_(f, frq_range[1], f < frq_range[2], f + frq_step):     # Loop over detuning

        update_frequency(qubit, f)                                  # Update freq. dynamically

        with for_(t, tau_range[1], t < tau_range[2], t + tau_step): # Loop over delay

      map[f, t] = ramsey(t, qubit, resonator, state)          # Update pixel on map

Fig. 2. Results of a high-resolution 2D Ramsey map measured with an OPX, in under 30 min and 10 lines of code, with varying 

driving frequency and interpulse delay. The zero detuning point refers to the qubit resonance frequency—courtesy of the 

Quantum Simulation Group, Lawrence Livermore National Laboratory.
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Well done! Now let’s go one level deeper into the dungeon.

The next boss we’ll be facing in our campaign 
is the drifts in resonance frequency every qubit 
experiences. To drive and use our QPU correctly we 

he qubit frequency often drifts during long 
sequences with many repetitions due to minor 
imperfections and perturbations, thus reducing 
our ability to probe the qubits correctly. It is 
essential that for every blow, we calibrate our 
aim yet this proved challenging with a party 
of general-purpose equipment, as it requires 
calculations and corrections in real-time using 
values calculated during the experiment. To get 
even close, adventurers must program FPGA and 
ADwin controllers to captain the fellowship of 
instruments, resulting in painfully long setup times 
and limitations due to inter-boxes latencies.

Level 2: Frequency Tracking

need to make sure we hit the spot. We need to hit 
a moving target. The challenges are clear, and our 
previous OBJECTIVES have slightly changed:

The Quantum Orchestration Platform resolves all 
that mess with one unified solution dedicated 
to real-time control. The Hadamard PPU at the 
core of the OPX works in “qubit-times” by default 
and is programmed easily in QUA, our high-level 
language that gets compiled automatically to 
FPGA assembly.

Our fancy experiment can now be written as a 
simple QUA code because we’ve handled the 
Ramsey challenge. I want to use randomized 
benchmarking as an example of a “fancy 
experiment” because we’d get to roll dice, and who 
doesn’t love rolling dice? Here goes:

MAKE IT SIMPLE ENOUGH TO AUTOMATE IT

Basic protocols must become no-brainers. We know this, of course. But they need to be simple 
enough to be automated to become part of the automated routine. 

SPEED IT UP TO BE MORE FREQUENT

Of course, we do not want to wait hours for a graph, but to get to the really crazy sequences, we 
need to perform the easy ones all the time.

MAKE IT FLEXIBLE & REAL-TIME, TO RUN DURING OTHER EXPERIMENTS

Dephasing times are on us, so our basic calibration routines must be able to run while we 
perform other longer experiments.

Active Frequency Tracking Sequence in QUA
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with program() as your_experiment:              # e.g. randomized_benchmarking

    n        = declare(int)                     # define real-time var. living on FPGA

    freq     = declare(int)

    res      = declare(bool)

    qubit_if = declare(int, value=original_if)

    with for_(n, 0, n < 1e6, n + 1):       # run as many iterations as you need

        randomized_benchmarking(qubit)          # macro including any of your experiments

        active_freq_tracking(qubit, qubit_if)   # experiment runs with active tracking

def active_freq_tracking(qubit, resonator, qubit_if, df, threshold):

    n           = declare(int)

    state_minus = declare(bool)

    state_plus  = declare(bool)

    diff        = declare(int)

    phi         = declare(int)

    delta_f     = declare(int)

    assign(phi, 0)

    

    with for_(n, 0, n < 2000, n + 1):           # Loop any number of times

        update_frequency(qubit, qubit_if - df)  # Ramsey with lower frequency

        state_minus = ramsey(tau, state_minust, resonator, state)

        update_frequency(qubit, qubit_if + df)  # Ramsey with higher frequency

        state_plus = ramsey(tau, state_plus)

        assign(diff, state_plus - state_minus)  # Difference between st. popul.

        assign(phi, phi + diff)

                                                # Freq shift is calculated from phi (via factor)

    assign(delta_f, Cast.mul_int_by_fixed(phi, phi_to_freq_factor))

    with if_(Math.abs(delta_f) > threshold):    # If shift higher than threshold, update

        assign(qubit_if, qubit_if + delta_f)

        update_frequency(qubit, qubit_if)

Here the active frequency tracking is wrapped into a macro. We get to run it within each iteration of any 
experiment, ensuring that drifts remain virtually zero at all times. Let’s see how the inner workings of the 
tracking macro look:
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To actively track the qubit resonant frequency, we 
use a neat trick: we perform a Ramsey experiment 
twice with fixed delay but at two different 
frequencies, the latest estimate of the resonant 
frequency  qubit_if , plus or minus a delta  df  

This is equivalent to measuring only two pixels in 
Fig.2, with the same x-axis coordinate, but each 
with a vertical distance  df  from the latest value 

So here it is! Like a wizard’s trick, we obtain a value 
for the drift quickly and readily update our drive 
frequency. We can do this thanks to the real-
time capabilities of our PPU, which can update 
the frequency, make calculations, compare to 
thresholds, and much more, all in real-time, with no 
communication to the lab computer. To top it off, 

used for the qubit frequency. Since the 2D Ramsey 
(Fig. 2) is symmetrical on the zero detuning line, 
a  qubit_if  exactly matching the resonant 
frequency would mean zero population difference  
 phi  measured. Additionally, ϕ will be proportional 

to any discrepancy between our applied frequency 
and the actual qubit frequency. Fig. 3 shows an 
example of full-Ramsey sweeps to show where the 
two measured points land. 

all of this is packaged into a simple, general, and 
reusable macro so that tracking the frequency will 
be just a single additional line of code away when 
you are ready for your next big experiment. And 
this is just the tip of the iceberg. Or, should I say, 
the first-tier dungeon.

Fig. 2. Results of Ramsey sequences with two different applied frequencies, IF±df, where IF refers to the qubit resonant frequency. 

Only the two highlighted points of this graph are measured to estimate the frequency drift with our tracking sequence.

The next level is for you to define.
I want you to sketch the coolest and most difficult 

Level 3: Challenge Us!

experiment idea you can think of and send it back 
to me. Let’s see how challenging it really is.
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Run State of the Art Experiments with Ease

OPX+ 

Pulse Processing Unit
Achieve the Fastest Time to Results

QUA
Code Quantum Programs Seamlessly

The Quantum 
Orchestration Platform
An End to End Quantum Control Solution to Drive the Fastest 
Time to Results, at Any Scale

An architecture designed from the ground up for quantum 
control, the OPX+ lets you run the quantum experiments of your 
dreams right from the installation. With a quantum feature-
rich environment, the OPX+ is built for scale and performance. 
Now, you can run the most complex quantum algorithms and 

experiments in a fraction of the development time. 

Within the OPX+ is the Pulse Processing Unit, QM’s leading-edge 
quantum control technology. Progress with incomparable speed 
and extreme flexibility. Run even the most demanding experiments 
efficiently, with the fastest runtimes and the lowest latencies in 
the industry, including quantum protocols that require real-time 

waveform generation, real-time waveform acquisition,  

real-time comprehensive processing, and control flow. 

Implement the protocols of your wildest dreams as easily as writing 

pseudocode. Designed for quantum control, QUA is the first universal 
quantum pulse-level programming language. Code even the most 
advanced programs and run them with the best possible performance. 
Natively describe your most challenging experiments, from complex 
AI-based multi-qubit calibrations to multi-qubit quantum error 
correction.

*All of the information above is also valid for the OPX
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About Quantum Machines
Quantum Machines accelerates the realization of useful quantum computers that will 
disrupt all industries. Supporting multiple Quantum Processing Unit (QPU) technologies, the 
company’s Quantum Orchestration Platform (QOP) fundamentally redefines the control and 
operations architecture of quantum processors with unprecedented levels of scalability, 
performance, and productivity. 

Our rich product portfolio, including full stack (hardware and software) quantum control and 
state-of-the-art quantum electronics empowers academia and national labs, HPC centers, 
enterprises, and cloud service providers building quantum computers all over the world. To 
learn more, please visit quantum-machines.co.

The information contained in this document is the property of Q.M. Technologies Ltd. (“Quantum Machines”) and QDevil Inc.

If you wish to learn more:
info@quantum-machines.co
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