
QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

TUTORIAL

Dungeons & Qubits:
Ramsey and Frequency
Tracking

Dive into the lab dungeon with us to fight two everyday problems:
measuring the qubit dephasing time and estimating resonance
frequency drifts.

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

In the last blog post, we
discussed how the Hadamard

Pulse Processing Unit (PPU)

enables real-time craziness and
provides the four stable pillars
of quantum control (parametric

waveform generation & manipulation, and
processing & control flow) in qubit timescales.

Today, I would like to show you just how powerful

Here we face the challenge of quantifying the
qubit dephasing time T2* to get an idea of how
long we have to run operations before quantum
information is lost. To measure this quantity, labs
everywhere use Ramsey sequences (see Fig.1). The
protocol consists of playing a 𝝅/2 pulse, followed
by a waiting time, or interpulse delay 𝛕, and then

Our OBJECTIVES are to optimize this widely-used procedure, to move on to more fun stuff:

Make It Simple

We need to make it easier to implement and use a Ramsey protocol inside other sequences.
Basic protocols must become no-brainers to get to crazier stuff.

Speed It Up

The protocol must run faster. We don’t want to wait hours for a graph, and we have a limited
time to perform sequences, so every nanosecond matters.

Make It Flexible & Real-Time

The next dungeons in our quantum future require flexibility and real-time feedback. We must be
able to measure and redefine the next pulse in much less than the T2*.

real-time control and feedback really are.
We will dive into the lab dungeon to fight two
everyday problems that nest there. In order of
difficulty, measuring the qubit dephasing time
and estimating resonance frequency drifts.
Together you and I are going to combat them
using the Quantum Orchestration Platform, its OPX,
and the PPU at its core, by tapping into Ramsey
measurement and qubit-frequency tracking
protocols.

Level 1: Ramsey Measurement

another 𝝅/2 pulse. Then, we measure the qubit to
monitor its state. The rotations on the Bloch sphere
are arranged in a way that changes the qubit state
from |0> to |1> and back. This way, we can measure
the timescale of the dephasing, which makes the
system deviate from this pattern.

20

Fig. 1. Schematics of one cycle of a Ramsey sequence, made by a 𝝅/2 pulse, a waiting time, another 𝝅/2 pulse, and finally a
readout measurement of the state of the qubit.

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
https://www.quantum-machines.co/blog/the-processor-designed-for-quantum-control/
https://www.quantum-machines.co/solutions/superconducting-qubits/#ramsey-experiment
https://www.quantum-machines.co/platform/
https://www.quantum-machines.co/opx+/

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Ramsey Sequence in QUA

We do it with little more than pseudocode: just play
a pulse, wait, play a pulse, measure (check out our
SSRO macro!). The 𝝅/2 pulses are just a few-data-
points waveforms drawn from a configuration file,
with pre-calibrated parameters.

With pulse-level logical commands such as
 wait() , we avoid the whole “send many zeros

to the AWG” thing. As a matter of fact, you won’t
need an AWG at all, so there’s that. To loading
and compilation times we say: no more! The PPU
understands the language we use to sketch ideas
on the whiteboard. If we go further down this route,
we won’t even find idle time to grab a coffee. Times
really are a-changing, aren’t they?

In our basic Ramsey block, we use a wait()

command to ensure the qubit is in its ground state.

Let’s get to the action. In QUA, our programming
language dedicated to quantum control, a Ramsey

sequence (as any other) can be comfortably
placed in a macro, e.g. within Python:

Of course, if we have a way to reset it actively, this
becomes unnecessary. The way you explain active
reset to a fellow physicist is a play() command
sending a "pi" pulse to our qubit, conditionally
on its state. A one-liner in QUA, which runs in less
than 200ns.

The align() command tells the PPU to time-
synchronize elements, so one will wait for the other.
If you’ve ever dealt with programming repeat-
until-success protocols and time-synchronized
stuff on FPGAs, you know this is a game-changer:
the difference between months of development
vs. hours or minutes. Unless specified via an

 align() , every command on different qubits
runs concurrently and independently on distinct
PPU threads. Two separate setups can run two
different experiments simultaneously, with one box.

def ramsey(tau, qubit, resonator, state): # sometimes we need a resonator, sometimes not

 wait(100, qubit) # PPU waits, no need to send zeros to memory

 play("pi_half", qubit) # Apply precalibrated pi/2 pulses with delay tau

 wait(tau, qubit)

 play("pi_half", qubit)

 align(qubit, resonator) # SSRO must happen after qubit oper.

 state = SSRO(resonator, state) # Measure the qubit, return 1 or 0.

 play("pi", qubit, condition=(state==1)) # Perform active reset -

 # only play pulse if qubit is in excited state

 return state

dead?
|0>?

no

yes

(loop over interpulse delay τ)

CHANGE RESTING TIME

QUBIT 1

RESONATOR

ATTACK!
PLAY(π)

TOGETHER!
ALIGN()

ROW!

YOUR
COOL

SEQUENCE

QUBIT 2

updatefrequency!

QUBIT n

ATTACK!
PLAY(π/2)

REST
WAIT(τ)

ATTACK!
PLAY(π/2)

LOOT
MEASURE()

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
https://www.quantum-machines.co/solutions/quantum-networks/#macros-in-qua
https://www.quantum-machines.co/qua-universal-quantum-language/
https://www.quantum-machines.co/solutions/quantum-networks/
https://www.quantum-machines.co/solutions/quantum-networks/

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

We repeat the Ramsey macro for different values
of the interpulse delay 𝛕 for a 1-dimensional
Ramsey and detuning for a 2-dimensional Ramsey

Loops and other control flow statements are also
understood by the PPU and run in real-time on
the FPGA (real-time logic rather than compiled
unwrapped code). Real-time variables are

So we implemented 1D and 2D Ramsey macros
with just a few lines of code: Simple.

Real-time logic makes the system simpler and

(see the result in Fig.2). Let’s also wrap this in a
macro; after all, why not?

updated and used for calculations or dynamically
compared to thresholds while you write everything
just as you would expect. update_frequency()

updates the frequency applied to the qubit, duh.

runs with the lowest possible latencies: Faster.

Every variable can be a real-time variable living on
FPGA: Flexible and Real-Time.

def two_d_ramsey(qubit, resonator, frq_range, frq_step, tau_range, tau_step, map):

 with for_(f, frq_range[1], f < frq_range[2], f + frq_step): # Loop over detuning

 update_frequency(qubit, f) # Update freq. dynamically

 with for_(t, tau_range[1], t < tau_range[2], t + tau_step): # Loop over delay

 map[f, t] = ramsey(t, qubit, resonator, state) # Update pixel on map

Fig. 2. Results of a high-resolution 2D Ramsey map measured with an OPX, in under 30 min and 10 lines of code, with varying

driving frequency and interpulse delay. The zero detuning point refers to the qubit resonance frequency—courtesy of the

Quantum Simulation Group, Lawrence Livermore National Laboratory.

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Well done! Now let’s go one level deeper into the dungeon.

The next boss we’ll be facing in our campaign
is the drifts in resonance frequency every qubit
experiences. To drive and use our QPU correctly we

he qubit frequency often drifts during long
sequences with many repetitions due to minor
imperfections and perturbations, thus reducing
our ability to probe the qubits correctly. It is
essential that for every blow, we calibrate our
aim yet this proved challenging with a party
of general-purpose equipment, as it requires
calculations and corrections in real-time using
values calculated during the experiment. To get
even close, adventurers must program FPGA and
ADwin controllers to captain the fellowship of
instruments, resulting in painfully long setup times
and limitations due to inter-boxes latencies.

Level 2: Frequency Tracking

need to make sure we hit the spot. We need to hit
a moving target. The challenges are clear, and our
previous OBJECTIVES have slightly changed:

The Quantum Orchestration Platform resolves all
that mess with one unified solution dedicated
to real-time control. The Hadamard PPU at the
core of the OPX works in “qubit-times” by default
and is programmed easily in QUA, our high-level
language that gets compiled automatically to
FPGA assembly.

Our fancy experiment can now be written as a
simple QUA code because we’ve handled the
Ramsey challenge. I want to use randomized
benchmarking as an example of a “fancy
experiment” because we’d get to roll dice, and who
doesn’t love rolling dice? Here goes:

MAKE IT SIMPLE ENOUGH TO AUTOMATE IT

Basic protocols must become no-brainers. We know this, of course. But they need to be simple
enough to be automated to become part of the automated routine.

SPEED IT UP TO BE MORE FREQUENT

Of course, we do not want to wait hours for a graph, but to get to the really crazy sequences, we
need to perform the easy ones all the time.

MAKE IT FLEXIBLE & REAL-TIME, TO RUN DURING OTHER EXPERIMENTS

Dephasing times are on us, so our basic calibration routines must be able to run while we
perform other longer experiments.

Active Frequency Tracking Sequence in QUA

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
https://www.quantum-machines.co/opx+/
https://www.quantum-machines.co/qua-universal-quantum-language/

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

with program() as your_experiment: # e.g. randomized_benchmarking

 n = declare(int) # define real-time var. living on FPGA

 freq = declare(int)

 res = declare(bool)

 qubit_if = declare(int, value=original_if)

 with for_(n, 0, n < 1e6, n + 1): # run as many iterations as you need

 randomized_benchmarking(qubit) # macro including any of your experiments

 active_freq_tracking(qubit, qubit_if) # experiment runs with active tracking

def active_freq_tracking(qubit, resonator, qubit_if, df, threshold):

 n = declare(int)

 state_minus = declare(bool)

 state_plus = declare(bool)

 diff = declare(int)

 phi = declare(int)

 delta_f = declare(int)

 assign(phi, 0)

 with for_(n, 0, n < 2000, n + 1): # Loop any number of times

 update_frequency(qubit, qubit_if - df) # Ramsey with lower frequency

 state_minus = ramsey(tau, state_minust, resonator, state)

 update_frequency(qubit, qubit_if + df) # Ramsey with higher frequency

 state_plus = ramsey(tau, state_plus)

 assign(diff, state_plus - state_minus) # Difference between st. popul.

 assign(phi, phi + diff)

 # Freq shift is calculated from phi (via factor)

 assign(delta_f, Cast.mul_int_by_fixed(phi, phi_to_freq_factor))

 with if_(Math.abs(delta_f) > threshold): # If shift higher than threshold, update

 assign(qubit_if, qubit_if + delta_f)

 update_frequency(qubit, qubit_if)

Here the active frequency tracking is wrapped into a macro. We get to run it within each iteration of any
experiment, ensuring that drifts remain virtually zero at all times. Let’s see how the inner workings of the
tracking macro look:

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

To actively track the qubit resonant frequency, we
use a neat trick: we perform a Ramsey experiment
twice with fixed delay but at two different
frequencies, the latest estimate of the resonant
frequency qubit_if , plus or minus a delta df

This is equivalent to measuring only two pixels in
Fig.2, with the same x-axis coordinate, but each
with a vertical distance df from the latest value

So here it is! Like a wizard’s trick, we obtain a value
for the drift quickly and readily update our drive
frequency. We can do this thanks to the real-
time capabilities of our PPU, which can update
the frequency, make calculations, compare to
thresholds, and much more, all in real-time, with no
communication to the lab computer. To top it off,

used for the qubit frequency. Since the 2D Ramsey
(Fig. 2) is symmetrical on the zero detuning line,
a qubit_if exactly matching the resonant
frequency would mean zero population difference
 phi measured. Additionally, ϕ will be proportional

to any discrepancy between our applied frequency
and the actual qubit frequency. Fig. 3 shows an
example of full-Ramsey sweeps to show where the
two measured points land.

all of this is packaged into a simple, general, and
reusable macro so that tracking the frequency will
be just a single additional line of code away when
you are ready for your next big experiment. And
this is just the tip of the iceberg. Or, should I say,
the first-tier dungeon.

Fig. 2. Results of Ramsey sequences with two different applied frequencies, IF±df, where IF refers to the qubit resonant frequency.

Only the two highlighted points of this graph are measured to estimate the frequency drift with our tracking sequence.

The next level is for you to define.
I want you to sketch the coolest and most difficult

Level 3: Challenge Us!

experiment idea you can think of and send it back
to me. Let’s see how challenging it really is.

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
mailto:lorenzo%40quantum-machines.co%20%3Clorenzo%40quantum-machines.co%3E%3B?subject=
mailto:lorenzo%40quantum-machines.co%20%3Clorenzo%40quantum-machines.co%3E%3B?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Run State of the Art Experiments with Ease

OPX+

Pulse Processing Unit
Achieve the Fastest Time to Results

QUA
Code Quantum Programs Seamlessly

The Quantum
Orchestration Platform
An End to End Quantum Control Solution to Drive the Fastest
Time to Results, at Any Scale

An architecture designed from the ground up for quantum
control, the OPX+ lets you run the quantum experiments of your
dreams right from the installation. With a quantum feature-
rich environment, the OPX+ is built for scale and performance.
Now, you can run the most complex quantum algorithms and

experiments in a fraction of the development time.

Within the OPX+ is the Pulse Processing Unit, QM’s leading-edge
quantum control technology. Progress with incomparable speed
and extreme flexibility. Run even the most demanding experiments
efficiently, with the fastest runtimes and the lowest latencies in
the industry, including quantum protocols that require real-time

waveform generation, real-time waveform acquisition,

real-time comprehensive processing, and control flow.

Implement the protocols of your wildest dreams as easily as writing

pseudocode. Designed for quantum control, QUA is the first universal
quantum pulse-level programming language. Code even the most
advanced programs and run them with the best possible performance.
Natively describe your most challenging experiments, from complex
AI-based multi-qubit calibrations to multi-qubit quantum error
correction.

*All of the information above is also valid for the OPX

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

About Quantum Machines
Quantum Machines accelerates the realization of useful quantum computers that will
disrupt all industries. Supporting multiple Quantum Processing Unit (QPU) technologies, the
company’s Quantum Orchestration Platform (QOP) fundamentally redefines the control and
operations architecture of quantum processors with unprecedented levels of scalability,
performance, and productivity.

Our rich product portfolio, including full stack (hardware and software) quantum control and
state-of-the-art quantum electronics empowers academia and national labs, HPC centers,
enterprises, and cloud service providers building quantum computers all over the world. To
learn more, please visit quantum-machines.co.

The information contained in this document is the property of Q.M. Technologies Ltd. (“Quantum Machines”) and QDevil Inc.

If you wish to learn more:
info@quantum-machines.co

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
http://www.quantum-machines.co
mailto:info%40quantum-machines.co?subject=

