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TUTORIAL

Machine Learning for 
Quantum Processing:
How to Run Real-Time 
Neural Networks
Learn how to achieve quantum dot tuning by running neural 
networks in real-time with QUA programming language and the 
Quantum Orchestration Platform.
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Quantum computing and neural networks; to be 
completely honest, I can’t imagine a more hyped-
up combination of techy buzzwords. These days 
it seems like almost everything has a “quantum” 
prefix, and it often makes my eyes roll. I imagine 
that people working on machine learning probably 
feel the same. As physicists, however, we get a 
free pass to play around with cool algorithms 
that actually push neural networks and quantum 
computing away from the hype realm and towards 
reality. This blog post is about one such algorithm. 

Here at QM, we pride ourselves on our innovative 
approaches. So even though neural network 

As their name suggests, neural networks constitute 
a set of algorithms that mimic the animal brain’s 
neural pathways, in which synapses transmit 
information between different neurons. Neural 
networks learn and adapt to changing inputs, 
generating the best result. Artificial neural 
networks operate under the same basic principles. 
Here, neurons process and receive the signal, 
where the output is computed using some non-
linear function made of the sum of its inputs. The 

One of the main advantages of the Quantum 
Orchestration platform is that we can run neural 
networks directly on the FPGA of the OPX+ device, in 
real-time, and on the native scale of operations on 
qubits. This allows us to classify, change, and learn 
in real-time what we should do with our qubits; as 
opposed to saving the data and analyzing it at a 
later point. 

For example, we can use convolutional neural 
networks to classify the state in a quantum dot 
system. We can thus proceed to apply gates 

processing in quantum computing has been 
around for a while, we decided to put a new spin 
on it and bring something fresh to the table: real-
time neural network processing. Yes, the kind 
that happens right within the FPGA. Not later, not 
on Python, but right there, as you conduct your 
experiment. We cannot stress this enough: the 
OPX+, our qubit control hardware is not an AWG, 
in fact, it’s nothing like it. Unless your AWG-based 
quantum control equipment also lets you do real-
time classical computation and training. This is 
where using Quantum Orchestration and the OPX+ 
really comes in handy. But before I get too ahead 
of myself, let’s start with the basics. 

Neural Networks, in Brief

Quantum Applications of Neural Networks

connections between the neurons are called 
edges; both these quantities have a weight, 
which changes as learning progresses, changing 
the strength at the connection. Neurons form 
layers, in which different transformations are 
performed, traveling from the input layer to the 
final output layer. Neural networks can be used 
to perform various actions, such as classification, 
optimization, and decision making.

accordingly, all that while the qubits are alive (as 
in, within the coherence time of qubits). Neural 
networks can also be applied to superconducting 
qubits; they can be used for optimizing parameters 
for real-time state estimation of multiplexed 
qubits, allowing for ultra-low latency feedback on 
multi-qubit devices. But more on these examples 
later. First, let’s examine how neural networks 
can be implemented using the pulse-level 
programming language, QUA.
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Neural Networks with QUA

Convolution Layer Implementation Example with Quantum Dots

The main idea of implementing the neural network 
is defining it through various layers and then 
allowing it to learn. All of this can be done in real-
time as the OPX+ is being used. Let’s focus on the 
first part first: the network itself.

One of the most promising qubit hardware 
platforms is quantum dots (QD) arrays (see more 
info on quantum control use cases for quantum 
dots here). In broad strokes, they benefit from 
fast measurement of spin and charge, long 
decoherence times, and the ability to perform 
two-qubit gates [1]. QD setups involve gate 
voltages that need to be precisely set in order to 
isolate the system to the single-electron regime, 
thus leading to a good qubit. Such tuning is a 
nontrivial task, and becomes more difficult the 
more qubits are added, as each dot is controlled 
by at least three gates which control the number 
of electrons in the dot, the tunnel coupling to the 
lead, and the coupling to adjacent dots. As more 
dots are added, the parameters set are increased 
exponentially. 

Currently, most of these voltages are set 
heuristically and this kind of approach does not 

We can then train the neural network, and get the output we desire.

In QUA, we can define layers as Python classes 
that implement QUA code. We have created dense 
layers and convolution layers, which are created 
classes, much like in Python.

work as the number of qubits increases. Thus, 
to allow for the scalability of quantum dots, 
there’s a need for another, preferably automated 
solution. In other words, we’re looking for a way 
to automate the electron configuration in the dot 
array, by finding a set of voltages that lead to 
dots at their intended positions and the correct 
amount of electrons and coupling. To understand 
what level of automation this will involve, we must 
first understand this heuristic approach better. 
Tuning quantum dots and turning them into 
qubits is a process that involves the identification 
of the global state of the device from a series of 
measurements. Subsequently, parameters are 
adjusted based on observation. Currently, this 
is done by a researcher actively looking at the 
placement of the quantum dots. This is where 
machine learning, specifically convolutional neural 
networks, comes in. 

with program() as prog:

    layer1 = Dense(3, 2, activation=ReLu())

    layer2 = Dense(2, 3, activation=ReLu())

    layer3 = Dense(3, 3, initializer=Normal())

    nn = Network(

layer1, layer2, layer3, loss=MeanSquared(), learning_rate=0.05, name="mynet"

)

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
https://www.quantum-machines.co/solutions/quantum-dots/


QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

One solution comes in the form of a repeat-
until-success active reset. We now add another 
threshold parameter that corresponds to the 
ground state peak’s frequency, which we dub p 
(see Figure 3). 

Let’s go through the QUA code first. It starts with 
us defining the neural network, made of several 
dense and convolutional layers that we’ll use to 
classify the state of our quantum dot. Each layer 

Positive Feedback – The Light at the End of the Tunnel

Take a Walk on the QUA Side

Figure 1: Visualization of the neural network process, as described by [1]. Step 1 shows the quantum dot device (made of 4 

quantum dots). The inset shows the double dot used in the experiment. In step 2, raw data is processed. In step 3, the neural 

network is employed. In step 4, optimization occurs to decide whether the current state is the desired one, and in Step 5, 

adjustment occurs and the process is then repeated.

Having two thresholds changes the rules of the 
game: if we are to the left of p (and therefore a as 
well), we believe we’re firmly in the ground state 
regime and we don’t do anything to our qubit. 

contains the size of the layer, followed by the size 
of the filter, which gets subsequently smaller and 
smaller.

layers.add(Conv((30, 30),(5,5), activation=ReLu()))

layer.add(MaxPool((25, 25),(10,10)))

layer.add(Conv((15, 15),(4,4), activation=ReLu()))

layer.add(MaxPool((11,11),(3,3)))

layer.add(Dense((8, 12), initializer=Normal()))

nn = Network(

*layers, loss=MeanSquared(), learning_rate=0.05, name="mynet")
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The inputs to the network will be generated in the following code block where we will measure a given 
state using the charge bistability diagram:

We then train our neural network in real-time or offline, based on the outputs from the measurement, where 
the labels are given ahead of time for partially known states and are then generalized for other states.

Finally, after the training, we are able to classify our states using the neural network, simply by 
measuring the quantum dot and using the measurement as input to the network. The result is then 
available in real-time while the qubit is still alive, and we can perform different operations depending 
on its state. For example, here we say that if the charge state is greater than 2, we apply a π pulse to 
the qubit.

def charge_bistability_diagram():

n=1000

  with for_(n, 0, n < n_avg, n + 1):

            with for_(v1, v1_start, v1 < v1_end, v1 + step):

                with for_(v2,v2_start, v2 < v2_end, v2 + step):

                    align("PG1", "PG2", "QPC")

                    play("const_pulse" * amp(v1), "PlungerGate1")

                    play("const_pulse" * amp(v2), "PlungerGate2")

                    measure(

"readout", "QPC", None, integration.full("integW", I, "out1"))

                    save(I,output_vector)

with for_(i, 0, i < 50, i + 1):

        i = declare(int)

        a = declare(fixed)

        charge_bistability_diagram(v1_start,v1_end, v2_start,v2_end, output_vector=input_)

        assign(input_[i], var)

        nn.training_step(input_, label_)

charge_bistability_diagram(v1_start,v1_end, v2_start, v2_end, output_vector=input_)

nn.forward(input_)

With if_(nn.result > 2):

 play(“pi”,”qubit”)
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Having full control of the FPGA through an intuitive 
pulse-level quantum programming language, 
QUA, allows for some very interesting things. We 
can run neural networks in real-time, such that 
we train our neural network and then apply the 
learnings right away. The applications are endless 

and one of them is the quantum dot tuning 
described in this post. The intersection of quantum 
computing and machine learning is a fascinating 
one, and personally, I’m very excited to see how 
this field progresses.

[1]      J. P. Zwolak et al., “Autotuning of Double-Dot Devices In Situ with Machine Learning,”  

          Phys. Rev. Appl., vol. 10, p. 34075, 2020.
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Run State of the Art Experiments with Ease

OPX+ 

Pulse Processing Unit
Achieve the Fastest Time to Results

QUA
Code Quantum Programs Seamlessly

The Quantum 
Orchestration Platform
An End to End Quantum Control Solution to Drive the Fastest 
Time to Results, at Any Scale

An architecture designed from the ground up for quantum 
control, the OPX+ lets you run the quantum experiments of your 
dreams right from the installation. With a quantum feature-
rich environment, the OPX+ is built for scale and performance. 
Now, you can run the most complex quantum algorithms and 
experiments in a fraction of the development time. 

Within the OPX+ is the Pulse Processing Unit, QM’s leading-edge 
quantum control technology. Progress with incomparable speed 
and extreme flexibility. Run even the most demanding experiments 
efficiently, with the fastest runtimes and the lowest latencies in 
the industry, including quantum protocols that require real-time 
waveform generation, real-time waveform acquisition,  
real-time comprehensive processing, and control flow. 

Implement the protocols of your wildest dreams as easily as writing 
pseudocode. Designed for quantum control, QUA is the first universal 
quantum pulse-level programming language. Code even the most 
advanced programs and run them with the best possible performance. 
Natively describe your most challenging experiments, from complex 
AI-based multi-qubit calibrations to multi-qubit quantum error 
correction.

*All of the information above is also valid for the OPX
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About Quantum Machines
Quantum Machines accelerates the realization of useful quantum computers that will 
disrupt all industries. Supporting multiple Quantum Processing Unit (QPU) technologies, the 
company’s Quantum Orchestration Platform (QOP) fundamentally redefines the control and 
operations architecture of quantum processors with unprecedented levels of scalability, 
performance, and productivity. 

Our rich product portfolio, including full stack (hardware and software) quantum control and 
state-of-the-art quantum electronics empowers academia and national labs, HPC centers, 
enterprises, and cloud service providers building quantum computers all over the world. To 
learn more, please visit quantum-machines.co.

The information contained in this document is the property of Q.M. Technologies Ltd. (“Quantum Machines”) and QDevil Inc.

If you wish to learn more:
info@quantum-machines.co
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