
QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

TUTORIAL

Machine Learning for
Quantum Processing:
How to Run Real-Time
Neural Networks
Learn how to achieve quantum dot tuning by running neural
networks in real-time with QUA programming language and the
Quantum Orchestration Platform.

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Quantum computing and neural networks; to be
completely honest, I can’t imagine a more hyped-
up combination of techy buzzwords. These days
it seems like almost everything has a “quantum”
prefix, and it often makes my eyes roll. I imagine
that people working on machine learning probably
feel the same. As physicists, however, we get a
free pass to play around with cool algorithms
that actually push neural networks and quantum
computing away from the hype realm and towards
reality. This blog post is about one such algorithm.

Here at QM, we pride ourselves on our innovative
approaches. So even though neural network

As their name suggests, neural networks constitute
a set of algorithms that mimic the animal brain’s
neural pathways, in which synapses transmit
information between different neurons. Neural
networks learn and adapt to changing inputs,
generating the best result. Artificial neural
networks operate under the same basic principles.
Here, neurons process and receive the signal,
where the output is computed using some non-
linear function made of the sum of its inputs. The

One of the main advantages of the Quantum
Orchestration platform is that we can run neural
networks directly on the FPGA of the OPX+ device, in
real-time, and on the native scale of operations on
qubits. This allows us to classify, change, and learn
in real-time what we should do with our qubits; as
opposed to saving the data and analyzing it at a
later point.

For example, we can use convolutional neural
networks to classify the state in a quantum dot
system. We can thus proceed to apply gates

processing in quantum computing has been
around for a while, we decided to put a new spin
on it and bring something fresh to the table: real-
time neural network processing. Yes, the kind
that happens right within the FPGA. Not later, not
on Python, but right there, as you conduct your
experiment. We cannot stress this enough: the
OPX+, our qubit control hardware is not an AWG,
in fact, it’s nothing like it. Unless your AWG-based
quantum control equipment also lets you do real-
time classical computation and training. This is
where using Quantum Orchestration and the OPX+
really comes in handy. But before I get too ahead
of myself, let’s start with the basics.

Neural Networks, in Brief

Quantum Applications of Neural Networks

connections between the neurons are called
edges; both these quantities have a weight,
which changes as learning progresses, changing
the strength at the connection. Neurons form
layers, in which different transformations are
performed, traveling from the input layer to the
final output layer. Neural networks can be used
to perform various actions, such as classification,
optimization, and decision making.

accordingly, all that while the qubits are alive (as
in, within the coherence time of qubits). Neural
networks can also be applied to superconducting
qubits; they can be used for optimizing parameters
for real-time state estimation of multiplexed
qubits, allowing for ultra-low latency feedback on
multi-qubit devices. But more on these examples
later. First, let’s examine how neural networks
can be implemented using the pulse-level
programming language, QUA.

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
https://wiki.pathmind.com/neural-network
https://www.quantum-machines.co/solutions/quantum-dots/
https://www.quantum-machines.co/solutions/quantum-dots/
https://www.quantum-machines.co/opx+/
https://www.quantum-machines.co/faq/is-the-opx-a-digitizer-awg-combo/
https://www.quantum-machines.co/solutions/superconducting-qubits/
https://www.quantum-machines.co/solutions/superconducting-qubits/
https://www.quantum-machines.co/blog/keep-your-finger-on-the-pulse-with-qua-a-pulse-level-quantum-programming-language/
https://www.quantum-machines.co/blog/keep-your-finger-on-the-pulse-with-qua-a-pulse-level-quantum-programming-language/

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Neural Networks with QUA

Convolution Layer Implementation Example with Quantum Dots

The main idea of implementing the neural network
is defining it through various layers and then
allowing it to learn. All of this can be done in real-
time as the OPX+ is being used. Let’s focus on the
first part first: the network itself.

One of the most promising qubit hardware
platforms is quantum dots (QD) arrays (see more
info on quantum control use cases for quantum
dots here). In broad strokes, they benefit from
fast measurement of spin and charge, long
decoherence times, and the ability to perform
two-qubit gates [1]. QD setups involve gate
voltages that need to be precisely set in order to
isolate the system to the single-electron regime,
thus leading to a good qubit. Such tuning is a
nontrivial task, and becomes more difficult the
more qubits are added, as each dot is controlled
by at least three gates which control the number
of electrons in the dot, the tunnel coupling to the
lead, and the coupling to adjacent dots. As more
dots are added, the parameters set are increased
exponentially.

Currently, most of these voltages are set
heuristically and this kind of approach does not

We can then train the neural network, and get the output we desire.

In QUA, we can define layers as Python classes
that implement QUA code. We have created dense
layers and convolution layers, which are created
classes, much like in Python.

work as the number of qubits increases. Thus,
to allow for the scalability of quantum dots,
there’s a need for another, preferably automated
solution. In other words, we’re looking for a way
to automate the electron configuration in the dot
array, by finding a set of voltages that lead to
dots at their intended positions and the correct
amount of electrons and coupling. To understand
what level of automation this will involve, we must
first understand this heuristic approach better.
Tuning quantum dots and turning them into
qubits is a process that involves the identification
of the global state of the device from a series of
measurements. Subsequently, parameters are
adjusted based on observation. Currently, this
is done by a researcher actively looking at the
placement of the quantum dots. This is where
machine learning, specifically convolutional neural
networks, comes in.

with program() as prog:

 layer1 = Dense(3, 2, activation=ReLu())

 layer2 = Dense(2, 3, activation=ReLu())

 layer3 = Dense(3, 3, initializer=Normal())

 nn = Network(

layer1, layer2, layer3, loss=MeanSquared(), learning_rate=0.05, name="mynet"

)

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
https://www.quantum-machines.co/solutions/quantum-dots/

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

One solution comes in the form of a repeat-
until-success active reset. We now add another
threshold parameter that corresponds to the
ground state peak’s frequency, which we dub p
(see Figure 3).

Let’s go through the QUA code first. It starts with
us defining the neural network, made of several
dense and convolutional layers that we’ll use to
classify the state of our quantum dot. Each layer

Positive Feedback – The Light at the End of the Tunnel

Take a Walk on the QUA Side

Figure 1: Visualization of the neural network process, as described by [1]. Step 1 shows the quantum dot device (made of 4

quantum dots). The inset shows the double dot used in the experiment. In step 2, raw data is processed. In step 3, the neural

network is employed. In step 4, optimization occurs to decide whether the current state is the desired one, and in Step 5,

adjustment occurs and the process is then repeated.

Having two thresholds changes the rules of the
game: if we are to the left of p (and therefore a as
well), we believe we’re firmly in the ground state
regime and we don’t do anything to our qubit.

contains the size of the layer, followed by the size
of the filter, which gets subsequently smaller and
smaller.

layers.add(Conv((30, 30),(5,5), activation=ReLu()))

layer.add(MaxPool((25, 25),(10,10)))

layer.add(Conv((15, 15),(4,4), activation=ReLu()))

layer.add(MaxPool((11,11),(3,3)))

layer.add(Dense((8, 12), initializer=Normal()))

nn = Network(

*layers, loss=MeanSquared(), learning_rate=0.05, name="mynet")

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

The inputs to the network will be generated in the following code block where we will measure a given
state using the charge bistability diagram:

We then train our neural network in real-time or offline, based on the outputs from the measurement, where
the labels are given ahead of time for partially known states and are then generalized for other states.

Finally, after the training, we are able to classify our states using the neural network, simply by
measuring the quantum dot and using the measurement as input to the network. The result is then
available in real-time while the qubit is still alive, and we can perform different operations depending
on its state. For example, here we say that if the charge state is greater than 2, we apply a π pulse to
the qubit.

def charge_bistability_diagram():

n=1000

 with for_(n, 0, n < n_avg, n + 1):

 with for_(v1, v1_start, v1 < v1_end, v1 + step):

 with for_(v2,v2_start, v2 < v2_end, v2 + step):

 align("PG1", "PG2", "QPC")

 play("const_pulse" * amp(v1), "PlungerGate1")

 play("const_pulse" * amp(v2), "PlungerGate2")

 measure(

"readout", "QPC", None, integration.full("integW", I, "out1"))

 save(I,output_vector)

with for_(i, 0, i < 50, i + 1):

 i = declare(int)

 a = declare(fixed)

 charge_bistability_diagram(v1_start,v1_end, v2_start,v2_end, output_vector=input_)

 assign(input_[i], var)

 nn.training_step(input_, label_)

charge_bistability_diagram(v1_start,v1_end, v2_start, v2_end, output_vector=input_)

nn.forward(input_)

With if_(nn.result > 2):

 play(“pi”,”qubit”)

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Having full control of the FPGA through an intuitive
pulse-level quantum programming language,
QUA, allows for some very interesting things. We
can run neural networks in real-time, such that
we train our neural network and then apply the
learnings right away. The applications are endless

and one of them is the quantum dot tuning
described in this post. The intersection of quantum
computing and machine learning is a fascinating
one, and personally, I’m very excited to see how
this field progresses.

[1] J. P. Zwolak et al., “Autotuning of Double-Dot Devices In Situ with Machine Learning,”

 Phys. Rev. Appl., vol. 10, p. 34075, 2020.

References

In Conclusion

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

Run State of the Art Experiments with Ease

OPX+

Pulse Processing Unit
Achieve the Fastest Time to Results

QUA
Code Quantum Programs Seamlessly

The Quantum
Orchestration Platform
An End to End Quantum Control Solution to Drive the Fastest
Time to Results, at Any Scale

An architecture designed from the ground up for quantum
control, the OPX+ lets you run the quantum experiments of your
dreams right from the installation. With a quantum feature-
rich environment, the OPX+ is built for scale and performance.
Now, you can run the most complex quantum algorithms and
experiments in a fraction of the development time.

Within the OPX+ is the Pulse Processing Unit, QM’s leading-edge
quantum control technology. Progress with incomparable speed
and extreme flexibility. Run even the most demanding experiments
efficiently, with the fastest runtimes and the lowest latencies in
the industry, including quantum protocols that require real-time
waveform generation, real-time waveform acquisition,
real-time comprehensive processing, and control flow.

Implement the protocols of your wildest dreams as easily as writing
pseudocode. Designed for quantum control, QUA is the first universal
quantum pulse-level programming language. Code even the most
advanced programs and run them with the best possible performance.
Natively describe your most challenging experiments, from complex
AI-based multi-qubit calibrations to multi-qubit quantum error
correction.

*All of the information above is also valid for the OPX

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=

QUANTUM-MACHINES.CO|INFO@QUANTUM-MACHINES.CO

About Quantum Machines
Quantum Machines accelerates the realization of useful quantum computers that will
disrupt all industries. Supporting multiple Quantum Processing Unit (QPU) technologies, the
company’s Quantum Orchestration Platform (QOP) fundamentally redefines the control and
operations architecture of quantum processors with unprecedented levels of scalability,
performance, and productivity.

Our rich product portfolio, including full stack (hardware and software) quantum control and
state-of-the-art quantum electronics empowers academia and national labs, HPC centers,
enterprises, and cloud service providers building quantum computers all over the world. To
learn more, please visit quantum-machines.co.

The information contained in this document is the property of Q.M. Technologies Ltd. (“Quantum Machines”) and QDevil Inc.

If you wish to learn more:
info@quantum-machines.co

http://www.quantum-machines.co
mailto:INFO%40QUANTUM-MACHINES.CO?subject=
http://www.quantum-machines.co
mailto:info%40quantum-machines.co?subject=

