QM logo
  • Products
    • Control Hardware
      • OPX1000
        Modular High-Density Quantum Control Platform
      • OPX+
        Ultra-Fast Quantum Controller
      • DGX Quantum
        Boost Quantum Control
with GPU/CPU Acceleration
      • QDAC-II Compact
        High-Density DAC
      • QDAC-II
        Ultra-Low-Noise 24-Channel DAC
    • Control Hardware Second Column
      • QSwitch
        Software-Controlled Breakout Box
      • Octave
        Up/Down Conversion Up to 18 GHz
      • QBox
        Highly Reliable 24-Channel Breakout Box
      • Cryogenic Electronics
    • Control Software
      • QUA
        Intuitive pulse-level programming
      • QUAlibrate
        Automated Calibration Software
  • Solutions
    • Use Cases
      • Advancing Quantum Research
      • Quantum Computing at Scale
      • Quantum for HPC
      • Quantum Control for Transducers
      • Quantum Sensing
      • Quantum Networks
    • Qubit Types
      • Superconducting
      • Semiconductor Spins
      • Optically Addressable
      • Neutral Atoms
    • More
      OPX1000 Microwave Module
      The Microwave Frontend Module for OPX1000 sets a new benchmark for controllers.
  • Technology
    • Core Technologies
      • HPU
        Real-Time Quantum Control at the Pulse Level
      • Control Benchmarks
        Pulse-level benchmarking system
      • Ultra-Fast Feedback
        OPX feedback and feed-forward performance
      • Direct Digital Synthesis
        Microwave pulses directly from digital data
    • More
      DDS for Large-Scale Quantum Computers
      How Direct Digital Synthesis (DDS) empowers the OPX1000 for quantum scalability & peak microwave control
  • Partner Program
  • Resource Center
    • left
      • Scientific Publications
      • Blog
      • Brochures
      • Podcasts
      • Videos
      • FAQ
    • More
      Finally: A Practical way to Benchmark Quantum Controllers
      A framework for evaluating quantum control solutions
  • Company
    • left
      • About Us
      • Careers
      • Press Releases
      • In the Media
      • Events
      • Visit IQCC
      • Newsletter
    • Diraq and QM employ AI for scaling silicon-based quantum computers with NVIDIA DGX Quantum
Contact Us
All Posts
QM Team
QM Team
  • Jump to:

All Posts

APS March Meeting 2021 and Quantum Machines: Tune In to Our Scientific Program

February 24 | 2021 | 06 min

As a company built by physicists for physicists, the most exciting time of the year for us is, obviously, March. The APS March Meeting is our Christmas, our Hanukah, and all holiday seasons combined. When the 2020 March Meeting was canceled at the last minute as the COVID-19 was just starting to make waves in the US and Europe, we were heartbroken. If for some weird reason you’re not a physicist, just imagine yourself as a kid who’s told Christmas is canceled. Well, 2020 is finally behind us, and 2021 brings with it some exciting news and vaccines (yay science!) and also, a brand new APS March Meeting!

This year’s March Meeting will take place online in a virtual format and our quantum team has prepared quite a program for it. So if you’re a quantum experimentalist looking to optimize the control of your qubits and push beyond the standard quantum limits, here are the scientific talks and workshops you shouldn’t miss. 
Before we dive in, please note that the time zone is Central Daylight Time, USA.

Quantum Orchestration Workshop: Integrated hardware and software for design and execution of complex quantum control protocols

Quantum Orchestration Workshop

Join our quantum physicists for a workshop demonstrating the Quantum Orchestration Platform. The hardware and software platform combines a unique processor architecture that allows the most cutting-edge real-time control capabilities with an intuitive, cross-platform pulse-level control programming language, QUA. This workshop introduces the platform, shows how it can control various setups, and presents live code examples in QUA, including multi-qubit feedback and complex control.

Workshop dates: Monday, March 15, Tuesday, March 16, Wednesday, March 17
Time: 10 AM – 11 AM (CT)

Counting Photons On-the-Fly with the Quantum Orchestration Platform

Nissim Ofek
Presenter: Nissim Ofek 

Abstract: As quantum computing technology advances, experiments are becoming more complicated and require a more sophisticated orchestration of control, measurements, signal processing, and real-time decision making. The Quantum Orchestration Platform is a new comprehensive hardware and software platform for running extremely complex experiments and algorithms on quantum hardware using an intuitive, yet highly expressive pulse-level programming language, QUA. In this talk, we illustrate the use of the Quantum Orchestration Platform in a recent experiment demonstrating a number resolved photocounter for propagating microwave mode, which utilized complex real-time flow control and ultra-low latency feedback [1].

[1] R. Dassonneville, R. Assouly, T. Peronnin, P. Rouchon and B. Huard, “Number-resolved photocounter for propagating microwave mode”, PRA 14, 044022 (2020).

Tune in on Monday, March 15, at 4:24 PM 
More details about the session here.

 

Real-time, adaptive quantum sensing with the Quantum Orchestration Platform

Nir Halay
Presenter: Nir Halay

Abstract: NV-center-based Quantum sensors have created a lot of interest in recent years due to their potential to provide an unprecedented combination of sensitivity and spatial resolution. To improve their performance and reach optimal sensitivity and measurement time, adaptive protocols in which control and measurement parameters are updated in real-time have been proposed, and some were recently demonstrated. Here we demonstrate how such protocols can be performed using Quantum Machines’ Quantum Orchestration Platform, which allows intuitive programming and significantly improved performance and feedback latency. Moreover, we discuss new protocols previously unexplored that can be performed with the platform.

Tune in on Monday, March 15, at 5:48 PM
More details about the session.

 

Exciting qubits and excited quasiparticles: the effect of actively pumping a qubit on its environment

Niv Drucker
Presenter: Niv Drucker

Abstract: In recent years, sophisticated control schemes for exploring and, moreover, reducing noise in quantum devices are being heavily investigated. Two important noise mechanisms in superconducting circuits that are being explored extensively and for which such control schemes have been employed, are quasiparticle tunneling and two-level systems. Here we shed more light on the subject by utilizing the Quantum Orchestration Platform, a unique control platform that provides ultra-low-latency feedback and great programming flexibility, to carefully design control sequences and explore their effect on the quasiparticle environment of a superconducting fluxonium qubit. We show striking results that demonstrate a highly non-linear environment with non-exponential and very low decay rates.

Tune in on Tuesday, March 16, at 10:24 AM
More details about this session.

 

Booting a quantum computer: A QUA-based graph framework for automatic qubit calibration, measurement, and execution of hybrid classical-quantum algorithms

Gal Winer
Presenter: Gal Winer

Abstract: Deploying algorithms on real-world quantum computers requires calibration and optimization steps, the complexity of which scales with the system’s size. These typically involve an interplay between quantum circuit execution on quantum hardware and classical processing of results on classical hardware. Interestingly, some of the most promising candidate algorithms for demonstrating quantum advantage in the next decade are, in fact, quantum-classical hybrid algorithms. Therefore, an automated framework for hybrid execution for efficiently running such protocols is highly desired.
We have developed an open-source framework which allows arranging and executing quantum and classical experimental steps as a directed acyclic graph (DAG). The framework is built on top of Python and QUA, a pulse-level cross-quantum-platform programming language. We showcase these abilities by a reference implementation of automated calibration, followed by the HHL algorithm’s execution targeting a system containing two superconducting qudits. Prepared in part by LLNL under Contract DE-AC52-07NA2734. LLNL-ABS-816411

Tune in on Wednesday, March 17, at 1:54 PM
More details about this session.

Quantum Orchestration – Integrated hardware and software for design and execution of complex quantum control protocols, Part 1 + 2

Yonatan Cohen
Yonatan Cohen
Itamar Sivan
Itamar Sivan

Abstract: The incredible progress in designing quantum systems, engineering their environment, and controlling them effectively, has led to significant improvements in coherence times, gate fidelities, and the ability to integrate more qubits into a single quantum processor. While the development of quantum processors remains the number one challenge, many bottlenecks exist in the classical control hardware layer as well as the software layer, where optimizations can play a critical role for near term quantum computing. Some examples include (1) feedback for error correction and repeat until success protocols, (2) complex calibrations, and (3) hybrid quantum-classical algorithms.
Here we present a new platform for designing quantum control protocols, executing them on a wide range of quantum hardware, and optimizing performance. The platform, called Quantum Orchestration Platform incorporates a unique FPGA architecture and integrates classical hardware and software in a novel way that allows for combining the most cutting-edge real-time control capabilities with an intuitive programming environment and language. We show examples and present results of several protocols, including multi-qubit feedback and complex control flow.

This double-session is on Thursday, March 18, 8:00 AM
More details here.

QM Team

QM Team

Quantum Machines accelerates the realization of practical quantum computing that will disrupt all industries. Our comprehensive portfolio includes state-of-the-art control and cryogenic electronic solutions that support a wide span of qubit technologies. With hundreds of deployments, Quantum Machines’ solutions have been an enabler for many research labs, HPC centers, full-stack quantum computer manufacturers, and cloud service providers.

Never miss a Quark!
Sign up for the Newsletter

QM logo

Privacy Policy Terms of Use

Request a Demo


Let’s Keep in Touch

Subscribe to Quantum Machines news,
product updates, events, and more

  • Product
    • QUANTUM CONTROL SYSTEMS
      • OPX1000
      • OPX+
      • Octave
      • QDAC-II Compact
      • QDAC-II
      • QSwitch
      • QBox
      • NVIDIA DGX Quantum
    • CRYOGENIC CONTROL SYSTEMS
      • QCage
      • QBoard
      • QFilter
  • Solutions
    • USE CASES
      • Advanding Quantum Research
      • Quantum Computing at Scale
      • Quantum for HPC
      • Quantum Control for Transducers
      • Quantum Sensing
      • Quantum Networks
    • QUBIT TYPES
      • Superconducting
      • Optically Addressable
      • Semiconductor Spins
      • Neutral Atoms
  • Technology
    • Hybrid Processing Unit (HPU)
    • QUA
    • Control Benchmarks
    • Ultra-Fast Feedback
  • Company
    • About Us
    • Careers
    • Press Releases
    • News
    • Events
    • Contact Us
  • Resource Center
    • Scientific Publications
    • Brochures
    • Videos
    • Blog
    • FAQ

Terms Privacy

© Q.M Technologies Ltd. (Quantum Machines) — All Rights Reserved

Take the Next Step

Have a specific experiment in mind and wondering about the best quantum control and electronics setup?

Talk to an Expert

Want to see what our quantum control and cryogenic electronics solutions can do for your qubits?

Request a Demo