QM logo
  • Products
    • Control Hardware
      • OPX1000
        Modular High-Density Quantum Control Platform
      • OPX+
        Ultra-Fast Quantum Controller
      • DGX Quantum
        Boost Quantum Control
with GPU/CPU Acceleration
      • QDAC-II Compact
        High-Density DAC
      • QDAC-II
        Ultra-Low-Noise 24-Channel DAC
    • Control Hardware Second Column
      • QSwitch
        Software-Controlled Breakout Box
      • Octave
        Up/Down Conversion Up to 18 GHz
      • QBox
        Highly Reliable 24-Channel Breakout Box
      • Cryogenic Electronics
    • Control Software
      • QUA
        Intuitive pulse-level programming
      • QUAlibrate
        Automated Calibration Software
  • Solutions
    • Use Cases
      • Advancing Quantum Research
      • Quantum Computing at Scale
      • Quantum for HPC
      • Quantum Control for Transducers
      • Quantum Sensing
      • Quantum Networks
    • Qubit Types
      • Superconducting
      • Semiconductor Spins
      • Optically Addressable
      • Neutral Atoms
    • More
      OPX1000 Microwave Module
      The Microwave Frontend Module for OPX1000 sets a new benchmark for controllers.
  • Technology
    • Core Technologies
      • HPU
        Real-Time Quantum Control at the Pulse Level
      • Control Benchmarks
        Pulse-level benchmarking system
      • Ultra-Fast Feedback
        OPX feedback and feed-forward performance
      • Direct Digital Synthesis
        Microwave pulses directly from digital data
    • More
      DDS for Large-Scale Quantum Computers
      How Direct Digital Synthesis (DDS) empowers the OPX1000 for quantum scalability & peak microwave control
  • Partner Program
  • Resource Center
    • left
      • Scientific Publications
      • Blog
      • Brochures
      • Podcasts
      • Videos
      • FAQ
    • More
      Finally: A Practical way to Benchmark Quantum Controllers
      A framework for evaluating quantum control solutions
  • Company
    • left
      • About Us
      • Careers
      • Press Releases
      • In the Media
      • Events
      • Visit IQCC
      • Newsletter
    • Qualibrate-Release
      Quantum Machines Launches QUAlibrate, an Open-Source Framework that Cuts Quantum Computer Calibration from Hours to Minutes
Contact Us

Request the QBoard-II Spec Sheet

Learn how you can save valuable research hours with a modular, configurable chip carrier.

 

Please fill in your details, and click to submit.

 

An email with the spec sheet will be sent to you shortly.

 

 

Learn Why Our
Customers Choose
Quantum Machines

A partner you can trust

”QM's control electronics provide the best real-time features along with an intuitive and well-documented programming interface. At TII, we successfully controlled a 25-q chip and conducted multiplexed characterization of all qubits using QM’s OPX and Octave. What we appreciate most, however, is the QM’s unwavering support and commitment to helping us achieve our targets, even going so far as to send some of their best scientists when needed.”

Alvaro Orgaz Lead Quantum Computing Control, TII

Substantially reducing coding complexity and time to results

“OPX has been a powerful enabler in our lab, helping us quickly characterize the performance of our recently discovered qubits. The hardware removes time wasted in uploading and waiting during pulse programming. QUA has substantially reduced the complexity of writing quantum protocols, allowing us to code dynamical decoupling and RB sequences in just a few lines. It remarkably saves our time in optimizing the processes and visualizing the results, allowing us to focus more on understanding the physics of our new qubits.” See case study >>

Prof. Dafei Jin Associate Prof., Dep. of Physics & Astronomy, University of Notre Dame

RT Bayesian estimation for drifts mitigation and improved coherence time

“The OPX’s fast feedback and unique real-time processing capabilities were critical for our experiment. Combining these with the OPX’s intuitive programming and QM’s state-of-the-art cryogenic electronics allowed us to do something that we have dreamt of doing for years.”

See case study >>

Prof. Ferdinand Kuemmeth Professor at Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Denmark

Learn Why Our
Customers Choose
Quantum Machines

A partner you can trust

”QM's control electronics provide the best real-time features along with an intuitive and well-documented programming interface. At TII, we successfully controlled a 25-q chip and conducted multiplexed characterization of all qubits using QM’s OPX and Octave. What we appreciate most, however, is the QM’s unwavering support and commitment to helping us achieve our targets, even going so far as to send some of their best scientists when needed.”

Alvaro Orgaz Lead Quantum Computing Control, TII
Substantially reducing coding complexity and time to results

“OPX has been a powerful enabler in our lab, helping us quickly characterize the performance of our recently discovered qubits. The hardware removes time wasted in uploading and waiting during pulse programming. QUA has substantially reduced the complexity of writing quantum protocols, allowing us to code dynamical decoupling and RB sequences in just a few lines. It remarkably saves our time in optimizing the processes and visualizing the results, allowing us to focus more on understanding the physics of our new qubits.” See case study >>

Prof. Dafei Jin Associate Prof., Dep. of Physics & Astronomy, University of Notre Dame
RT Bayesian estimation for drifts mitigation and improved coherence time

“The OPX’s fast feedback and unique real-time processing capabilities were critical for our experiment. Combining these with the OPX’s intuitive programming and QM’s state-of-the-art cryogenic electronics allowed us to do something that we have dreamt of doing for years.”

See case study >>

Prof. Ferdinand Kuemmeth Professor at Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Denmark
A partner you can trust
Substantially reducing coding complexity and time to results
RT Bayesian estimation for drifts mitigation and improved coherence time
QM logo

Privacy Policy Terms of Use

Request a Demo


Let’s Keep in Touch

Subscribe to Quantum Machines news,
product updates, events, and more

  • Product
    • QUANTUM CONTROL SYSTEMS
      • OPX1000
      • OPX+
      • Octave
      • QDAC-II Compact
      • QDAC-II
      • QSwitch
      • QBox
      • NVIDIA DGX Quantum
    • CRYOGENIC CONTROL SYSTEMS
      • QCage
      • QBoard
      • QFilter
  • Solutions
    • USE CASES
      • Advanding Quantum Research
      • Quantum Computing at Scale
      • Quantum for HPC
      • Quantum Control for Transducers
      • Quantum Sensing
      • Quantum Networks
    • QUBIT TYPES
      • Superconducting
      • Optically Addressable
      • Semiconductor Spins
      • Neutral Atoms
  • Technology
    • Hybrid Processing Unit (HPU)
    • QUA
    • Control Benchmarks
    • Ultra-Fast Feedback
  • Company
    • About Us
    • Careers
    • Press Releases
    • News
    • Events
    • Contact Us
  • Resource Center
    • Scientific Publications
    • Brochures
    • Videos
    • Blog
    • FAQ

Terms Privacy

© Q.M Technologies Ltd. (Quantum Machines) — All Rights Reserved

Take the Next Step

Have a specific experiment in mind and wondering about the best quantum control and electronics setup?

Talk to an Expert

Want to see what our quantum control and cryogenic electronics solutions can do for your qubits?

Request a Demo